20 research outputs found

    Omecamtiv Mecarbil Enhances the Duty Ratio of Human \u3cem\u3eÎČ\u3c/em\u3e-Cardiac Myosin Resulting in Increased Calcium Sensitivity and Slowed Force Development in Cardiac Muscle

    Get PDF
    The small molecule drug omecamtiv mecarbil (OM) specifically targets cardiac muscle myosin and is known to enhance cardiac muscle performance, yet its impact on human cardiac myosin motor function is unclear. We expressed and purified human ÎČ-cardiac myosin subfragment 1 (M2ÎČ-S1) containing a C-terminal Avi tag. We demonstrate that the maximum actin-activated ATPase activity of M2ÎČ-S1 is slowed more than 4-fold in the presence of OM, whereas the actin concentration required for half-maximal ATPase was reduced dramatically (30-fold). We find OM does not change the overall actin affinity. Transient kinetic experiments suggest that there are two kinetic pathways in the presence of OM. The dominant pathway results in a slow transition between actomyosin·ADP states and increases the time myosin is strongly bound to actin. However, OM also traps a population of myosin heads in a weak actin affinity state with slow product release. We demonstrate that OM can reduce the actin sliding velocity more than 100-fold in the in vitro motility assay. The ionic strength dependence of in vitro motility suggests the inhibition may be at least partially due to drag forces from weakly attached myosin heads. OM causes an increase in duty ratio examined in the motility assay. Experiments with permeabilized human myocardium demonstrate that OM increases calcium sensitivity and slows force development (ktr) in a concentration-dependent manner, whereas the maximally activated force is unchanged. We propose that OM increases the myosin duty ratio, which results in enhanced calcium sensitivity but slower force development in human myocardium

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore