743 research outputs found

    Distribution and contamination status of heavy metals in estuarine sediments near Cua Ong Harbour, Ha Long Bay, Vietnam

    Get PDF
    The distribution, controlling geochemical factors and contamination status of heavy metals in estuarine sediments near Cua Ong Habor, Ha Long Bay (Vietnam) were investigated. 36 surface sediment samples were collected and analyzed for major elements (Al, Ca, Fe, K, Mg, S), heavy metals (As, Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn), organic matter, loss on ignition (LOI), grain size composition and pH. Spatial distribution patterns of heavy metals as well as their controlling factors were elucidated based on geochemical mapping and statistical methods such as the Pearson ProductMoment linear correlation and Factor Analysis. The results illustrated that the distribution patterns of As, Cd, Cr, Cu, Ni, Pb and Zn are mainly controlled by organic matter and clay minerals and determined by the distribution of the finegrained fraction (F < 63 µm) in the sediments. In contrast, Fe and Mn compounds seem to exert some control on the distribution of Co. Carbonates partly control the distribution of Mn, but are not important with respect to the other studied heavy metals. The contamination status by heavy metals was assessed based on comparison with Canadian, Wisconsin- United States and Flemish numerical Sediment Quality Guidelines, and calculation of Geo-accumulation Index (Igeo) and Enrichment Factor (EF). The results indicated that natural processes such as weathering and erosion of bedrock are the main supply sources of heavy metals in sediments near Cua Ong Harbor. Among the studied heavy metals, only As is of concern whereas Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn seem to reflect their background concentrations in sediments of Ha Long Bay

    Selection and validation of reference genes for quantitative RT-PCR expression studies of the non-model crop Musa

    Get PDF
    Gene expression analysis by reverse transcriptase real-time or quantitative polymerase chain reaction (RT-qPCR) is becoming widely used for nonmodel plant species. Given the high sensitivity of this method, normalization using multiple housekeeping or reference genes is critical, and careful selection of these reference genes is one of the most important steps to obtain reliable results. In this study, reference genes commonly used for other plant species were investigated to identify genes displaying highly uniform expression patterns in different varieties, tissues, developmental stages, fungal infection, and osmotic stress conditions for the non-model crop Musa (banana and plantains). The expression stability of six candidate reference genes was tested on six different sample sets, and the results were analyzed using the publicly available algorithms geNorm and NormFinder. Our results show that variety, plant material, primer set, and gene identity can all influence the robustness and outcome of RT-qPCR analysis. In the case of Musa, a combination of three reference genes (EF1, TUB and ACT) can be used for normalization of gene expression data from greenhouse leaf samples. In the case of shoot meristem cultures, numerous combinations can be used because the investigated reference genes exhibited limited variability. In contrast, variability in expression of the reference genes was much larger among leaf samples from plants grown in vitro, for which the best combination of reference genes (L2 and ACT genes) is still suboptimal. Overall, our data confirm that the stability of candidate reference gene

    Metabolite profiling characterises chemotypes of Musa diploids and triploids at juvenile and preflowering growth stages

    Get PDF
    Open Access Journal; Published online: 15 March 2019Bananas (Musa spp.) are consumed worldwide as dessert and cooking types. Edible banana varieties are for the most part seedless and sterile and therefore vegetatively propagated. This confers difficulties for breeding approaches against pressing biotic and abiotic threats and for the nutritional enhancement of banana pulp. A panel of banana accessions, representative of the diversity of wild and cultivated bananas, was analysed to assess the range of chemotypes available globally. The focus of this assessment was banana leaves at two growth stages (juvenile and pre-flowering), to see when during the plant growth metabolic differences can be established. The metabolic data corresponded to genomic trends reported in previous studies and demonstrated a link between metabolites/pathways and the genomes of M. acuminata and M. balbisiana. Furthermore, the vigour and resistance traits of M. balbisiana was connected to the phenolic composition and showed differences with the number of B genes in the hybrid accessions. Differences in the juvenile and pre-flowering data led to low correlation between the growth stages for prediction purposes

    Assessment of metabolic variability and diversity present in leaf, peel and pulp tissue of diploid and triploid Musa spp.

    Get PDF
    Banana (Musa spp.) plants produce many health promoting compounds in leaf, peel and pulp. For a robust metabolic analysis of these tissues, leaf at five developmental stages were compared to assess suitable sampling practices. Results confirmed that the common sampling practise of leaf 3 is applicable for metabolic comparisons. The developed work flow was applied to analyse the metabolite diversity present in 18 different Musa varieties, providing baseline levels of metabolites in leaf, peel and pulp tissue. Correlation analysis was then used to ascertain whether similar trends can be detected in the three plant tissues of the diversity panel. The genome group displayed a dominant role in the composition of the metabolome in all three tissues. This led to the conclusion that a correlation between tissues was only possible within a genome group as the different parental backgrounds caused too great a variation in the metabolomes. It also suggests the metabolome could be used to monitor the interaction/hybridisation of genomes during breeding programmes

    Stochastic series expansion method for quantum Ising models with arbitrary interactions

    Full text link
    A quantum Monte Carlo algorithm for the transverse Ising model with arbitrary short- or long-range interactions is presented. The algorithm is based on sampling the diagonal matrix elements of the power series expansion of the density matrix (stochastic series expansion), and avoids the interaction summations necessary in conventional methods. In the case of long-range interactions, the scaling of the computation time with the system size N is therefore reduced from N^2 to Nln(N). The method is tested on a one-dimensional ferromagnet in a transverse field, with interactions decaying as 1/r^2.Comment: 9 pages, 5 figure

    The early diagenetic and PETROphysical behaviour of recent cold-water CARbonate mounds in Deep Environments (PETROCARDE)

    Get PDF
    Sub-recent cold-water carbonate mounds localized in deeper slope settings on the Atlantic continental margins cannot be any longer neglected in the study of carbonate systems. They clearly play a major role in the dynamics of mixed siliciclastic-carbonate and/or carbonate-dominated continental slopes. Carbonate accumulation rates of cold-water carbonate mounds are about 4 to 12 % of the carbonate accumulation rates of tropical shallow-water reefs but exceed the carbonate accumulation rates of their slope settings by a factor of 4 to 12 (Titschack et al.,2009). These findings emphasize the importance of these carbonate factories as carbonate niches on the continental margins. The primary environmental architecture of such carbonate bodies is well-characterized. However, despite proven evidences of early diagenesis overprinting the primary environmental record (e.g. aragonite dissolution) (Foubert & Henriet, 2009), the extent of early diagenetic and biogeochemical processes shaping the petrophysical nature of mounds is until now not yet fully understood.Understanding (1) the functioning of a carbonate mound as biogeochemical reactor triggering early diagenetic processes and (2) the impact of early diagenesis on the petrophysical behaviour of a carbonate mound in space and through time are necessary (vital) for the reliable prediction of potential late diagenetic processes. Approaching the fossil carbonate mound record, through a profound study of recent carbonate bodies is innovative and will help to better understand processes observed in the fossil mound world (such as cementation, brecciation, fracturing, etc. . . ).In this study, the 155-m high Challenger mound (Porcupine Seabight, SW of Ireland), drilled during IODP Expedition 307 aboard the R/V Joides Resolution (Foubert & Henriet, 2009), and mounds from the Gulf of Cadiz (Moroccan margin) will be discussed in terms of early diagenetic processes and petrophysical behaviour. Early differential diagenesis overprints the primary environmental signals in Challenger mound, with extensive coral dissolution and the genesis of small-scaled semi-lithified layers in the Ca-rich intervals. The low cementation rates compared to the extensive dissolution patterns can be explained by an open-system diagenetic model. Moreover, Pirlet et al. (2009) emphasizes the occurrence of gypsum and dolomite in another mound system (Mound Perseverance) in Porcupine Seabight, which might be also related with fluid oxidation events in a semi-open diagenetic system. Along the Moroccan margins, fluid seepage and fluxes in pore water transport affect the development of mound structures, enhancing extensive cold-water coral dissolution and precipitation of diagenetic minerals such as dolomite, calcite, pyrite, etc. (Foubert et al., 2008). Recent carbonate mounds provide indeed an excellent opportunity to study early diagenetic processes in carbonate systems without the complications of burial and/or later meteoric diagenesis
    • …
    corecore