15 research outputs found

    Effect of Chemical Treatment on Thermal Properties of Jute Fiber Used in Polymer Composites

    Get PDF
    In recent years, natural fibers, such as jute has gained significant research interest in order to fabricate fiber reinforced polymer composites. Chemical treatments are generally carried out on the raw fibers for making composites with improved properties. From a composite manufacturing point of view, it is important to understand how the treatments can affect the thermal properties of the jute fiber. In the present research, the effects of rot-retardant, fire-retardant and water-retardant treatments on thermal properties of the jute fiber were investigated. Fiber samples were collected from the middle portion of whole jute fiber. Thermo-gravimetric analysis (TGA) and differential scanning calorimetric (DSC) analysis were subsequently conducted on the jute fiber for thermal characterization. The results demonstrated a lower thermal decomposition temperature in the case of fire-retardant treated jute fiber but higher residue at above 400 °C, as compared to the raw and other treated fibers. In general, it was found that chemically treated fibers absorbed less heat, in contrast to the raw jute fiber and heat flow became negative in all cases of the treated fibers. This study provides important information about the thermal properties of the treated jute fibers for manufacturing polymer-based composite materials

    Physical, mechanical and thermal properties of jute and bamboo fiber reinforced unidirectional epoxy composites

    Get PDF
    A detailed investigation of physical, mechanical and thermal properties of jute and bamboo fiber reinforced epoxy resin unidirectional void free composites was carried out. The composites were prepared by using vacuum technique. Scanning electron microscopic analysis, tensile and flexural testing and thermogravimetric analysis were performed in order to evaluate surface morphology, mechanical properties and thermal behavior of the unidirectional composites respectively. The relationship between theoretical and experimental values was figured out using rules of mixture. The analytical results showed good agreement with the experimental results. Comparing jute and bamboo fiber reinforced unidirectional composites, it is observed that bamboo fiber reinforced epoxy composites showed good results in terms of tensile strength, while jute fiber reinforced epoxy composites had higher Young\u27s modulus values. Bamboo fiber reinforced epoxy composites showed good flexure strength in the longitudinal distribution. On the other hand, jute fiber reinforced epoxy composited had better flexural strength with transverse fiber distribution in the composites. Fiber distribution was not uniform for both bamboo and jute fiber reinforced unidirectional epoxy composites. Scanning electron microscopic analysis showed that morphological changes took place depending on the fiber orientation in epoxy composites. It is also observed from thermogravimetric analysis that jute fiber reinforced epoxy composites had better thermal behavior compared to bamboo fiber reinforced epoxy composites

    Effect of Rot-, Fire-, and Water-Retardant Treatments on Jute Fiber and Their Associated Thermoplastic Composites: A Study by FTIR

    Get PDF
    Natural renewable materials can play a big role in reducing the consumption of synthetic materials for environmental sustainability. Natural fiber-reinforced composites have attracted significant research and commercial importance due to their versatile characteristics and multi-dimensional applications. As the natural materials are easily rotten, flammable, and moisture absorbent, they require additional chemical modification for use in sustainable product development. In the present research, jute fibers were treated with rot-, fire-, and water-retardant chemicals and their corresponding polymer composites were fabricated using a compression molding technique. To identify the effects of the chemical treatments on the jute fiber and their polymeric composites, a Fourier transformed infrared radiation (FTIR) study was conducted and the results were analyzed. The presence of various chemicals in the post-treated fibers and the associated composites were identified through the FTIR analysis. The varying weight percentage of the chemicals used for treating the fibers affected the physio-mechanical properties of the fiber as well as their composites. From the FTIR analysis, it was concluded that crystallinity increased with the chemical concentration of the treatment which could be contributed to the improvement in their mechanical performance. This study provides valuable information for both academia and industry on the effect of various chemical treatments of the jute fiber for improved product development

    Current development and future perspective on natural jute fibers and their biocomposites

    Get PDF
    The increasing trend of the use of synthetic products may result in an increased level of pollution affecting both the environment and living organisms. Therefore, from the sustainability point of view, natural, renewable and biodegradable materials are urgently needed to replace environmentally harmful synthetic materials. Jute, one of the natural fibers, plays a vital role in developing composite materials that showed potential in a variety of applications such as household, automotive and medical appliances. This paper first reviews the characterization and performance of jute fibers. Subsequently, the main focus is shifted towards research advancements in enhancing physical, mechanical, thermal and tribological properties of the polymeric materials (i.e., synthetic or biobased and thermoplastic or thermoset plastic) reinforced with jute fibers in a variety of forms such as particle, short fiber or woven fabric. It is understood that the physio-mechanical properties of jute-polymer composites largely vary based on the fiber processing and treatment, fiber shape and/or size, fabrication processes, fiber volume fraction, layering sequence within the matrix, interaction of the fiber with the matrix and the matrix materials used. Furthermore, the emerging research on jute fiber, such as nanomaterials from jute, bioplastic packaging, heavy metal absorption, electronics, energy device or medical applications and development of jute fiber composites with 3D printing, is explored. Finally, the key challenges for jute and its derivative products in gaining commercial successes have been highlighted and potential future directions are discussed

    Assessing Mechanical Properties of Jute, Kenaf, and Pineapple Leaf Fiber-Reinforced Polypropylene Composites: Experiment and Modelling

    Get PDF
    The application of natural fibers is increasing rapidly in the polymer-based composites. This study investigates manufacturing and characterization of polypropylene (PP) based composites reinforced with three different natural fibers: jute, kenaf, and pineapple leaf fiber (PALF). In each case, the fiber weight percentages were varied by 30 wt.%, 35 wt.%, and 40 wt.%. Mechanical properties such as tensile, flexural, and impact strengths were determined by following the relevant standards. Fourier transform infrared (FTIR) spectroscopy was employed to identify the chemical interactions between the fiber and the PP matrix material. Tensile strength and Izod impact strength of the composites significantly increased for all the composites with different fiber contents when compared to the pure PP matrix. The tensile moduli of the composites were compared to the values obtained from two theoretical models based on the modified “rule of mixtures” method. Results from the modelling agreed well with the experimental results. Tensile strength (ranging from 43 to 58 MPa), flexural strength (ranging from 53 to 67 MPa), and impact strength (ranging from 25 to 46 kJ/m2) of the composites significantly increased for all the composites with different fiber contents when compared to the pure PP matrix having tensile strength of 36 MPa, flexural strength of 53 Mpa, and impact strength of 22 kJ/m2. Furthermore, an improvement in flexural strength but not highly significant was found for majority of the composites. Overall, PALF-PP displayed better mechanical properties among the composites due to the high tensile strength of PALF. In most of the cases, T98 (degradation temperature at 98% weight loss) of the composite samples was higher (532–544 °C) than that of 100% PP (500 °C) matrix. Fractured surfaces of the composites were observed in a scanning electron microscope (SEM) and analyses were made in terms of fiber matrix interaction. This comparison will help the researcher to select any of the natural fiber for fiber-based reinforced composites according to the requirement of the final product

    Effect of Processing Techniques and Characteristics of Plastic Products

    No full text
    Plastics and polymeric materials have a wide range of applications in the macro, micro, as well as nanoworld. The criteria, quality, durability, cost, performance, and environmental effect of these plastics and polymeric components (part of a product) or a product depend on the raw material and their processing technique (development, recycle etc.). Plastics and polymer materials itself have long term effect on the environment as their processing techniques emit gas or absorb energy. Therefore, important considerations should be made on the processing techniques of the plastics and polymer materials. This chapter addressed the effect of different processing techniques on the characteristics, namely, mechanical and environmental, of plastics and polymeric products or components. Furthermore, this chapter deals with the impact of processing techniques on the performance and environment followed by a mathematical illustration of plastics and polymeric products

    On the Mechanical Properties and Uncertainties of Jute Yarns

    No full text
    Products made from natural materials are eco-friendly. Therefore, it is important to supply product developers with reliable information regarding the properties of natural materials. In this study, we consider a widely used natural material called jute, which grows in Bangladesh, India, and China. We described the results of tensile tests on jute yarns, as well as the energy absorption patterns leading to yarn failure. We have also used statistical analyses and possibility distributions to quantify the uncertainty associated with the following properties of jute yarn: tensile strength, modulus of elasticity, and strain to failure. The uncertainty and energy absorption patterns of jute yarns were compared with those of jute fibers. We concluded that in order to ensure the reliability and durability of a product made from jute, it is good practice to examine the material properties of yarns rather than those of fibers

    Effect of Rot-Retardant Treatment on Properties of Jute Fibers

    No full text
    Jute natural fiber is gradually replacing traditional glass fibers as reinforcement in composites due to their higher specific modulus and lower specific gravity. For reducing rotting properties of jute fiber, rot-retardant treatment was conducted on different portions of the fiber. The rot-retardant jute fibers were characterized by tensile test, Fourier transform infra-red spectroscopy, scanning electron microscopy, X-ray diffraction analysis, and thermal and water absorption tests. The tensile properties improved in the middle portion as compared to the top and bottom portions and deteriorated after rot-retardant treatment. The diameter gradually increased from top to middle and then to bottom portion after treatment. The crystalinity index was found higher for bottom portion. Thermal properties of jute fiber also improved as compared to the control jute fiber. The rot-retardant--treated jute fiber may find satisfactory and desirable application in our house hold accessories
    corecore