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Abstract: In recent years, natural fibers, such as jute has gained significant research interest in order
to fabricate fiber reinforced polymer composites. Chemical treatments are generally carried out on
the raw fibers for making composites with improved properties. From a composite manufacturing
point of view, it is important to understand how the treatments can affect the thermal properties of
the jute fiber. In the present research, the effects of rot-retardant, fire-retardant and water-retardant
treatments on thermal properties of the jute fiber were investigated. Fiber samples were collected
from the middle portion of whole jute fiber. Thermo-gravimetric analysis (TGA) and differential
scanning calorimetric (DSC) analysis were subsequently conducted on the jute fiber for thermal
characterization. The results demonstrated a lower thermal decomposition temperature in the case of
fire-retardant treated jute fiber but higher residue at above 400 ◦C, as compared to the raw and other
treated fibers. In general, it was found that chemically treated fibers absorbed less heat, in contrast to
the raw jute fiber and heat flow became negative in all cases of the treated fibers. This study provides
important information about the thermal properties of the treated jute fibers for manufacturing
polymer-based composite materials.

Keywords: jute fiber; chemical treatment; thermal properties; DSC; TGA; composite

1. Introduction

Due to the increase in CO2 emission to the environment from materials processing, developing
environmentally friendly products from natural sources of raw materials has become an important
research topic in recent years. Generally, heavy metals emit more CO2 than natural materials. For this
reason, the use of manmade and natural materials should be balanced in order to achieve sustainability
in the long run. Living beings use materials and energy from the natural world, such as water,
air, land, biomass, ore, and so on for producing commercial products [1]. Excessive use of natural
resources and producing harmful byproducts would disturb the ecological harmony with far reaching
negative consequences to the environment. For example, global temperature will increase, thus, ice
will melt in the Polar Regions, water level will rise, and some areas of the earth will become deserts.
Some of these symptoms have already started to become apparent [2]. Therefore, an emphasis on
protecting the natural world should be considered to attain a sustainable eco-system. Due to the
requirement of environment-friendly materials, natural fibers such as jute, ramie, kenaf etc. have
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attracted renewed attention that once was shifted to synthetic products. The use of natural material in
value added product development has increased due to the recent rise of sustainability awareness, since
the Kyoto protocol on global climate change has declared [3]. The scope of incorporating natural fiber
in eco-product is huge due to the fiber’s low cost of primary material production, product processing,
light weight, biodegrability, and reduced emission of CO2 as compared to those of manmade materials.
Like any other natural fibers, jute is a natural material widely used in household, office, and vehicle.
Moreover, jute plant emits O2 and absorbs CO2 from the environment. Therefore, there exists abundant
potential for developing eco-friendly value-added products using jute fibers alone, or as reinforcing
structural material, in composite.

Jute is cheap, easily available, biodegradable, light weight, and non-toxic with no adverse effects
on the environment as compared to the manmade fibers. Besides, natural fibers are more co-operative
to chemical modification due to the existence of hydroxyl groups [4]. Surface characteristics, such as
wetting, adhesion, surface tension or porosity of fibers can be improved by chemical modification.
The hydroxyl groups are involved in the hydrogen bonding within cellulose molecules, thereby,
triggering these groups or introducing new moieties that form effective links within the system.
The anomalies on the fiber surface can play a significant role in mechanical interlocking at the boundary
or interface of fiber matrix in the polymer-based composites. The interfacial properties can be improved
by conducting appropriate chemical modifications to the components, which give rise to changes in
physical and chemical interactions at the interface [5]. Among all other modifications, rot-, water-,
and fire-retardant treatments are important for improving the resistance of fiber against rotting, due
to bacterial attack, wetting in contact with liquid, and burning under fire, respectively. These three
types of chemical treatments of the jute fiber are important for fabricating fiber reinforced composite in
different application scenarios. For example, rot-retardant (RT) treated fiber is used for the protection of
fungal attract in products like nursery pot, flower vase, furniture and kitchen accessories. Fire-retardant
treated (FT) fiber is applied for the protection of the product from firing, like inner part of the transport
vehicle, insulator, high temperature sensitive robot and aerospace vehicle. Water-retardant treated
(WT) materials can protect fiber from excess absorption of water, like lower part of the basin, bathtub,
roof top, and boat.

A large number of studies have reported on the chemical modifications of different fibers,
the evaluation of their thermal properties and observation of their effects on fiber reinforced
composite [6–13]. In most of the cases jute was used as a reinforcing material either in the form
of fiber or yarn [14–17]. Whereas, Polypropylene (PP), MAgPP, polyester, epoxy, and polythene were
used as the matrix materials [18–22]. Processing temperature of jute-based composites varies based on the
melting points of the matrix materials. At high temperature, the jute fiber properties can be degraded,
which is a critical issue for manufacturing jute-based composite products. There is limited information is
available in the literature regarding the effect of treatment on thermal properties of the jute fiber. Therefore,
it is important to understand thermal characteristics of the treated fibers at high temperature.

In the present research, jute fibers were chemically modified and their thermal properties were
studied. Rot-retardant (RT), fire-retardant (FT), and water-retardant (WT) treatments of the jute fiber
were considered. The study would be helpful for revealing the impact of treated jute fiber as a
reinforcing material in composites in the case of high temperature applications or during composite
fabrication. Using thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC),
heat resistance, mass change and heat flow pattern of the jute fibers can be observed to provide useful
scientific knowledge for mass production of jute polymer composites and other jute products.

2. Experimental Procedure

TGA and DSC analyses were carried out to evaluate the thermal characteristics of the raw and
chemically modified jute fibers. In order to support the experimental results of thermal analysis, Fourier
Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM) studies were also conducted to
extract additional information about thermal characteristics of the treated fibers.
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2.1. Collection and Segmentation of Jute Fiber

Jute fiber named CVL-1 (Corchoruscapsularis L.) was collected from Faridpur Regional Station of
Bangladesh Jute Research Institute (BJRI), Bangladesh. Experimental methodology to investigate the
thermal properties of the jute fiber is presented in Figure 1. The middle portion of whole jute fibers
were cut and considered for three different chemical (RT, FT, and WT) treatments. After treatment,
the fiber samples were prepared and finally, thermal tests were performed and analyzed.
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2.2. Chemical Treatments

Copper salt (CuSO4), phosphate salt (NH4HPO4) and chloride salt ([C2H3Cl]n or PVC) were
used for the RT, FT, and WT treatments, respectively. Na2CO3, was used as catalyst for RT and FT
treatments, whereas WT treatment employed MgCl2 [23]. After finishing the treatment, jute fibers
were air-dried and considered for the thermal test. The golden color of raw jute fiber transformed into
light bluish color, with copper salt treatment as shown in Figure 2.
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On the other hand, phosphate salt-treated fiber appeared bright golden hair and chloride salt
treatment transformed the fiber into bright brown color. In each case of chemical treatments, three
different concentrations of chemicals were used to prepare total 9 types of fiber samples in order to
identify how the chemical concentration might affect the thermal properties of the jute fibers. Table 1
presents the sample details.

Table 1. Jute samples prepared with different chemical treatments.

Sample Code Treatment
Name Chemical Name Chemical

Concentration (wt.%) Sample Colour

RT
R1

Rot-retardant
Copper salt

(CuSO4·5H2O)

4
Light bluishR2 8

R3 12

FT
F1

Fire-retardant
Phosphate salt

(NH4HPO4)

20
Bright goldenF2 25

F3 30

WT
W1

Water-retardant
Chloride salt

([C2H3Cl]n or PVC)

10
Bright brownW2 15

W3 20

2.3. Evaluation of Thermal Properties

2.3.1. Thermo-Gravimetric Analysis (TGA)

TGA is an important method to understand weight loss, thermal stability and thermal
decomposition of materials [24]. TGA also indicates the temperature range for the thermal stability and
requires only a small amount of samples to test shown in Figure 3a. In case of TGA, the heat is absorbed
by the samples to evaporate by losing their own weight as shown in Figure 3b. Thermo-gravimetric
analysis (TGA) was conducted on 8–10 mg chemically modified and raw jute fibers at a heating rate of
5 ◦C/min using a Thermo-Gravimetric Analyzer (TA Instrument SDT Q50). The samples were subjected
to TGA in high purity nitrogen environment under a constant flow rate of 5 mL/min, a sample purge
flow of 60 mL/min and a balance purge flow of 40 mL/min. A pre-programmed temperature range of
30–450 ◦C was set for carrying out thermal decomposition of the samples. During the experiments,
weight loss and temperature were continuously recorded to determine the following characteristics:
thermal degradation rate (% weight loss/min), derivative weight loss, initial degradation temperature,
10% and 50% weight loss temperature and residual weight at 450 ◦C.
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2.3.2. Differential Scanning Calorimetry (DSC)

DSC measures the temperature and heat flow associated with transition in materials as a function
of temperature and time [8,24]. A DSC Q10 (TA instrument) thermal system using a sealed aluminum



J. Compos. Sci. 2020, 4, 132 5 of 13

capsule was used to conduct the DSC analysis. The samples weighing to approximately 7.0–8.5 mg
as shown in Figure 3c were held at a single heating rate of 5 ◦C/min and scanning temperature
from 30 ◦C to 600 ◦C. Heat flow data were recorded based on an average value obtained from three
experimental runs.

2.4. Scanning Electron Microscopy (SEM)

Surface morphologies of the jute fibers were studied by a Scanning Electron Microscope (XL 30
Philips, Eindhoven, The Netherland). A small portion of the fiber was cut from each sample and
placed on the SEM sample holder. Prior to this, the samples were coated with a thin gold coating,
using sputtering technique, in order to make them conductive.

2.5. Fourier Transform Infrared (FTIR) Spectroscopy

A digital spectrophotometer (Model Nicolet-380, Madison, WI, USA) was employed to conduct
FTIR spectroscopy of the raw and treated jute fibers by following Attenuated Total Reflectance (ATR)
technique. The analyses were run using the KBr pellet technique. The samples were scanned with a
transmittance range of 370 to 4000 cm−1.

3. Results and Discussions

The results and discussions section is divided into three subsections. Sections 3.1 and 3.2 describe
TGA and DTGA results of the raw and treated jute fibers. Section 3.3 describes DSC results of the
respective fibers. In order to support characterization of the fiber thermal properties, Sections 3.4
and 3.5 present SEM and FTIR observations of the raw, and chemically modified jute fibers, respectively.

3.1. Thermo-Gravimetric Analysis (TGA)

Weight change data obtained from TGA on the chemically modified and raw jute fibers are
presented in Figure 4 and listed in Table 2. Based on Figure 4, it is clear that thermal degradation of
the chemically modified jute fibers is different at different stages of temperature change, compared
to the raw fiber. Thermal stability and percentage of the residue for the modified and raw jute fibers
are rarely related. Among all three treatments, the highest amount of residue was found from the
FT samples at above 350 ◦C as shown in Table 2. The second highest residue was obtained in the
case of RT and WT samples, compared to the unmodified jute fiber. In FT, the slower decomposition
rate, from 205 ◦C to 265 ◦C, shows gradual weight loss whereas the faster rate, from 265 ◦C to 360 ◦C,
marks active pyrolysis. Maximum weight loss occurred at 325 ◦C for RT and WT jute fiber [25]. Active
pyrolysis was lowest in the case of FT modified jute fiber. On the other hand, it was 25% lower in the
case of FT samples, compared to the raw fiber.

Table 2. Thermal stability and residue of three different chemically modified jute fibers.

Jute Fiber Samples Thermal Stability at
15% Weight Loss (◦C)

Peak Temperature of Derivative
Weight Change (◦C) Residue (wt.%)

Raw 30–242.9 332.9–347.4 13.0–18.8
RT 30–267.4 223.0–269.0 12.8–21.1
FT 30–238.7 263.3–268.6 30.5–37.7
WT 30–263.8 301.8–310.1 20.0–21.5
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Figure 4. Weight change of raw and chemically modified (rot-retardant, RT; fire-retardant, FT and
water-retardant, WT treatments) jute fibers; (a) at a glance; and (b) at different activation points and
optimized chemical concentrations (8% RT, 25% FT, and 15% WT).

The residues for RT, WT, and FT modified jute fibers were obtained in the range of 18.35–20.09%,
20.42–21.26%, and 30.48–37.71%, respectively, compared to the raw jute fiber above 300 ◦C. In active
pyrolysis, the low molecular weight proto-lignin degrades first however, at a slower rate than the other
constituents [26]. At temperatures between 170 ◦C and 230 ◦C, the weak linkage was damaged whereas
elevated temperature caused the de-bonding of stronger structures in aromatic rings. It should be
noted that there exists an inverse relationship between lignin content and thermal stability. This means
that thermal stability will be increased with a decrease in concentration of lignin. Pyrolysis of lignin
and the cellulose up to 400 ◦C could be responsible for producing solid charred residual. Besides,
the phosphate groups present in the FT fiber could be decomposed at a reduced thermal degradation
temperature to generate the thermal char.

In raw jute fiber, the appearance of the first thermal degradation was due to water desorption,
which was the highest for the raw fiber and lowest for the FT modified fiber among the alternatives.
The second thermal degradation occurred at a lower temperature, in the case of FT-modified jute fiber,
followed by WT and RT modified jute fibers. However, the first and second thermal degradation of the
RT and WT modified jute fiber, lay between the raw and FT modified jute fibers. From the graphical
results of TGA, it can be concluded that FT modified jute fiber changes its mass/weight at a lower
temperature, compared to the other treated and raw jute fibers during the application of heat.

In Figure 4, it is depicted that there are diverse stages of decomposition for the chemically
modified and raw fibers. Thermographs of the fibers presented three stages (from 25 ◦C to 180 ◦C,
from 180 ◦C to 280 ◦C and from 280 to 500 ◦C of decomposition. The degradation temperature of
cellulose is higher than the hemicellulose 25–290 ◦C and lignin 150–420 ◦C [10]. Therefore, after the
removal of free water attached on the fiber surface evaporated between the temperature ranges of
150–500 ◦C, the degradation process started for lignin, hemicelluloses, and cellulose constituents and
the associated linked water. The thermal degradation due to water absorption was shifted to 65.79 ◦C
for RT, 68.65 ◦C for WT and 76.53 ◦C for FT. Similarly, second thermal degradation shifted to 304.39 ◦C
for RT, 292.21 ◦C for WT, and 202.64 ◦C for FT. Furthermore, from the figure, 5% weight of total fiber
weight change occurred at the transition point, 10% weight change occurred at the thermal stability
points, and 50–80% weight change occurred at the activation point for raw and treated jute fibers.
The initial 10% weight loss occurred, due to moisture evaporation, second 20–30% weight loss occurred,
due to degradation of light material, such as hemicellulose and cellulose and 70% weight loss occurred
due to the decomposition of heavy materials like lignin of jute fiber. Thermal degradation below
200 ◦C temperature was lowest in the case of raw jute fiber due to the presence of only water. However,
in the case of modified fibers, thermal degradation occurred at a higher temperature as a result of the
presence of chemicals and water.
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In the case of raw jute fiber, before 100 ◦C, the volatile material such as water is removed, followed
by a stable temperature with no significant change. At around 200–350 ◦C, thermal degradation
increases, where most of the chemical reaction is occurred, called activation energy. This activation
energy for the raw jute fiber was found lower than the other treated fibers. The residue was also low
for the raw fiber, due to the lower activation energy. The weight loss of FT treated jute fiber was lower
at activation point than that of the raw jute fiber, indicating that the interaction between the fiber
and NH4 salt started at a lower temperature and therefore FT fiber started to decompose at 250 ◦C
temperature. In FT-treated jute fiber, the residue was higher indicating that the chemical reaction
occurred at a slower rate indicating a higher activation energy, compared to the other alternatives.
Whereas, the decomposition temperatures for RT and WT jute fibers was in the range of 250–350 ◦C.
Moreover, the activation energy of RT and WT was similar to the raw fiber, demonstrating that these
two treatments do not influence the jute fiber’s activation energy. Similar findings were attained by
El-Shekeil, et al., and Arao, et al. [24,27,28]. Therefore, it can be concluded that FT fiber will retain
its characteristics at a higher temperature during composite manufacturing or applications in high
temperature environments.

Several studies on different fibers and their composites support the present results. Hossain et al.
performed chemical treatment on thermal properties of natural fiber from ladies’ fingers (Okra) [10].
They observed the same level of thermal stability for both raw and treated ladies’ fingers fiber. However,
in the present research, it was found that after chemical modification, activation energy was changed
compared to the raw one. Furthermore, the FT treated jute fiber absorbed more energy compared to
the other treated and raw jute fibers. The present results for FT are similar to the results of Khalili, et al.,
Wu al. and Vunain et al., who conducted an analysis on different fire-retardant composites [11,26,29].
They observed similar amount of thermal residue at higher temperature in case of FT treated fiber,
as well as their composites.

3.2. Derivative Thermo-Gravimetric Analysis (DTGA)

The derivative weight changes due to applied heat in a closed chamber for the chemically modified
and raw samples are shown in Figure 5. There is a peak below 60 ◦C was due to loss of moisture. From
the figure it is clear that the pyrolysis of the raw jute fiber starts at about 350◦C whereas this pyrolysis
occurred at earlier temperature in the cases of treated fibers with different chemical concentrations.
More specifically, it was 260–325 ◦C for RT, 225–275 ◦C for FT and 275–325 ◦C for WT. With the increase
of chemical concentration for RT, the maximum value of derivative weight decreased. This indicated
that with RT treatment, the activation energy increased gradually. In the case of FT, the weight change
was lower at the concentration of 25% (F2), compared to the other concentrations (F1 and F3). In the
case of WT, maximum derivative weight was found at the concentration of 15% (W2).Also, for the
RT, FT, and WT jute fibers, derivative weights were 66.66%, 41%, and 45.83% lower respectively as
compared to the raw jute fiber at the decomposition temperatures. In the case of RT, degradation
occurred at 325 ◦C similar to the raw jute fiber, whereas WT and FT fiber degradations occurred at
300 ◦C, and 250 ◦C, respectively, as shown in Figure 5b. In case of all RT and WT modified jute fibers,
only one wide pick appeared within the hemi cellulose and cellulose range. A similar conclusion was
drawn by Kabir et al. [30,31].
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Figure 5. Derivative weight change of the (a) raw and all treated, (b) raw and optimized (8% RT, 25%
FT, and 15 % WT treated jute fibers.

In the case of FT treated jute fiber, no peak above 320 ◦C meant that there was no cellulose
remaining and their strength should be less than the raw jute fiber [32]. As there was only hemicellulose
left, the strength of the fiber would be similar to a hemicellulose fiber. Besides this, the derivative
weight change temperature of the FT modified jute fiber was the lowest among the three modified
jute fibers indicated by a different decomposition pattern from the other alternatives. Similar findings
are observed in the TGA plot. Though the TGA plot for raw, RT and WT jute fibers indicated that
their decomposition patterns were overlapped. From the derivative weight change pattern of raw and
modified jute fiber showed that they were well-separated, which indicates they have distinguished
decomposition pattern.

3.3. Differential Scanning Calorimetric Analysis

DSC analysis revealed that, after chemical treatment, heat could not flow easily through chemically
modified jute fibers, as shown in Figure 6. It was clear from the figure that both endothermic and
exothermic peaks, available for the raw and the treated jute fibers, were present. In the case of raw
jute fiber, there were two endothermic peaks before the final exothermic peak. At the temperature
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of endothermic peak, the jute fiber absorbed heat, whereas at the temperature of exothermic peak,
jute fiber releases heat to the environment. At the first two endothermic peak positions, jute fiber
released water and heavy metal like lignin and at the final exothermic peak the cellulose/hemicellulose
breakdown occurred [31]. In the case of RT, a reduced amount of heat could flow as compared
to the raw jute fiber. The amount of heat flow through the WT fiber lay between the RT and FT
modified fibers. From the figure, it was also clear that the lowest amount of heat flowed for the FT
treated jute fiber. Therefore, FT modification can be used for making the raw jute more fire retardant.
At higher temperatures, the melting with decomposition was exothermic except FT, whereas, at lower
temperatures there was only one endothermic peak in the cases of RT, and WT modified jute fiber.
According to Shahinur, et al. the endothermal reaction occurred due to volatilization (gasses) of
molecules, whereas exothermal reaction occurred due to the formation of charring (solid residue) [33].
Different types of decomposition temperatures are tabulated for the chemically modified jute fibers
and presented in Table 3. It should be noted that at 200 ◦C, an additional peak was observed for the FT
modified jute fiber due to the removal of the lignin or cellulose from the fiber. In derivative weight
change, some extra peaks were observed due to the existence of different chemicals or radicals. Based
on the above contemplation. It can be concluded that in the case of product development using the raw
and treated jute fibers, the manufacturing temperature could be less than 200 ◦C for environmental
safety, as well as to retain the material characteristics.
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Figure 6. DSC patterns of raw and modified jute fibers; (a) at a glance; and (b) at different endothermic
and exothermic points at optimized chemical concentrations (8% RT, 25% FT, and 15% WT).

Table 3. Decomposition temperature of chemically modified jute fiber.

Temperature ◦C
Nature of Peak

Raw Jute RT FT WT

Decomposition 1 30–59.73 59.71–65.61 65.61–75.10 65.61–69.06 Endo

Decomposition 2 332–364 - 200.29–203.74 - Endo

Decomposition 3 376–423 305–429 256.40–280.57 291.79–293.52 Exo

Decomposition 4 - - 281–309 - Endo

3.4. Surface Morphology of Jute Fibers

SEM micrographs of raw and chemically modified jute fibers are shown in Figure 7. It is clear that
the surface of the raw jute fiber appeared rough. The figure revealed that after chemical treatment,
the surface of jute fiber became smoother in all three cases though some chemical modification might
make the fiber surface rougher [34]. It is believed that interactions of the chemicals with the fiber
surface form a coating that could be responsible for these smoother surface morphologies.
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Figure 7. SEM micrographs of (a) raw; (b) RT (c) FT; and (d) WT modified jute fibers.

3.5. FTIR Analysis

FTIR spectra of the raw and chemically modified jute fiber are shown in Figure 8. The small
peaks around 3680–4000 cm−1 is occurred due to the noise of environment for the raw and treated jute
fibers. The peak around 3680–3200 cm−1 for the raw jute fiber was due to the presence of hydroxyl
(OH-) group. At low frequencies, the chemical constituents in the fibers produced resonance frequency.
After chemical treatment, the OH group shifted towards right. More specifically 3401.90 cm−1 for
RT, 3241.14 cm−1 for FT and 3390.48 cm−1 for WT. The shifting occurred due to the chemical used for
treatment of the jute fibers. Therefore, FTIR confirmed the presence of chemicals attached to the fiber
surface [23]. This observation also supported the physical appearance of the treated fiber, such as
surface smoothness due to a chemical coating observed in the SEM images in Figure 7. Furthermore,
the OH group also indicated the presence of water in the fibers. At around 3400 cm−1, higher absorption
was observed for the raw fiber in comparison with the other treated fibers indicating that the chemical
treatment transformed the fibers more hydrophobic with less OH group. In case of FT fiber an extra
peak was appeared at 2500 cm−1 due to the presence of amine group (NH-). The spectra also revealed
that at lower wavelength 1500–400 cm−1, the peak variation was observed due to the removal of lignin
from the jute fiber caused by the chemical treatment.
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Figure 8. FTIR spectra of raw and modified jute fibers at optimized chemical concentrations (8% RT,
25% FT, and 15% WT).

4. Conclusions

Based on quantitative analysis of the thermal test of various chemically modified and raw jute
fibers used for polymer composite fabrication, the following conclusions can be drawn. Final residue
at higher temperature was in the similar range for RT, WT and raw jute fibers. However, there was 40%
more residue found at above 400 ◦C in FT-treated jute fiber, compared to the raw jute fiber. Thermal
stability of the three different treatments follows different curves. Active pyrolysis temperature was
similar for RT, WT, and raw jute fiber, while it was lower in the case of FT treated jute fiber. Chemically
treated fibers absorbed less heat as compared to the raw jute fiber. Heat absorption by the treated
fibers from lowest to the highest can be ranked according to the following order: RT < WT < FT.
After treatment, heat flow became negative as compared to the untreated jute fiber. The results
indicated that FT modified jute fiber displayed best thermal characteristics, compared to the raw and
other modified fibers. Chemically treated jute fiber can be used as reinforced material for fabricating
green-composite, which is commonly used for manufacturing regular household products or in heat
sensitive areas, such as metallic material primary production, nuclear power plant and primary material
of robot.
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