972 research outputs found

    Developing and Applying a User-friendly Web-based GIS for Participative Environmental Assessment

    Get PDF
    The strong spatial and temporal dimensions of development plans necessitate certain requirements in relation to the analytical tools applied to support Strategic Environmental Assessment (SEA) processes. The nature of plans and, subsequently, spatial data requires presenting them in graphic format. Similarly, temporal variation can often be represented in visual form by spatially illustrating changes over-time. Furthermore, it is estimated that up to 85% of all data have a spatial component and, therefore, can be mapped using Geographic Information Systems (GIS) (Chan and Easa, 2000). In this context, the graphic display and analytical potential of GIS can significantly contribute to SEA of development plans by facilitating and enhancing the various stages of the process

    The costs of accessible quality assured syphilis diagnostics: informing quality systems for rapid syphilis tests in a Tanzanian setting.

    Get PDF
    OBJECTIVES: To determine the costs of Rapid Syphilis Test (RSTs) as compared with rapid plasma reagin (RPR) when implemented in a Tanzanian setting, and to determine the relative impact of a quality assurance (QA) system on the cost of RST implementation. METHODS: The incremental costs for RPR and RST screening programmes in existing antenatal care settings in Geita District, Tanzania were collected for 9 months in subsequent years from nine health facilities that varied in size, remoteness and scope of antenatal services. The costs per woman tested and treated were estimated for each facility. A sensitivity analysis was constructed to determine the impact of parameter and model uncertainty. FINDINGS: In surveyed facilities, a total of 6362 women were tested with RSTs compared with 224 tested with RPR. The range of unit costs was 1.76−1.76-3.13 per woman screened and 12.88−12.88-32.67 per woman treated. Unit costs for the QA system came to $0.51 per woman tested, of which 50% were attributed to salaries and transport for project personnel. CONCLUSIONS: Our results suggest that rapid syphilis diagnostics are very inexpensive in this setting and can overcome some critical barriers to ensuring universal access to syphilis testing and treatment. The additional costs for implementation of a quality system were found to be relatively small, and could be reduced through alterations to the programme design. Given the potential for a quality system to improve quality of diagnosis and care, we recommend that QA activities be incorporated into RST roll-out

    Inhibitory Control Processes and the Strategies That Support Them during Hand and Eye Movements

    Get PDF
    Background and Aims: Adaptive behavior depends on the ability to voluntarily suppress context-inappropriate behaviors, a process referred to as response inhibition. Stop Signal tests (SSTs) are the most frequently studied paradigm used to assess response inhibition. Previous studies of SSTs have indicated that inhibitory control behavior can be explained using a common model in which GO and STOP processes are initiated independent from one and another, and the process that is completed first determines whether the behavior is elicited (GO process) or terminated (STOP process). Consistent with this model, studies have indicated that individuals strategically delay their behaviors during SSTs in order to increase their stopping abilities. Despite being controlled by distinct neural systems, prior studies have largely documented similar inhibitory control performance across eye and hand movements. Though, no existing studies have compared the extent to which individuals strategically delay behavior across different effectors is not yet clear. Here, we compared the extent to which inhibitory control processes and the cognitive strategies that support them during oculomotor and manual motor behaviors. Methods: We examined 29 healthy individuals who performed parallel oculomotor and manual motor SSTs. Participants also completed a separate block of GO trials administered prior to the Stop Signal tests to assess baseline reaction times for each effector and reaction time increases during interleaved GO trials of the SST. Results: Our results showed that stopping errors increased for both effectors as the interval between GO and STOP cues was increased (i.e., stop signal delay), but performance deteriorated more rapidly for eye compared to hand movements with increases in stop signal delay. During GO trials, participants delayed the initiation of their responses for each effector, and greater slowing of reaction times on GO trials was associated with increased accuracy on STOP trials for both effectors. However, participants delayed their eye movements to a lesser degree than their hand movements, and strategic reaction time slowing was a stronger determinant of stopping accuracy for hand compared to eye movements. Overall, stopping accuracies for eye and hand movements were only modestly correlated, and the time it took individuals to cancel a response was not related for eye and hand movements. Discussion and Conclusion: Our findings that GO and STOP processes are independent and that individuals strategically delay their behavioral responses to increase stopping accuracy regardless of effector indicate that inhibitory control of Frontiers in Psychology | www.frontiersin.org 1 December 2016 | Volume 7 | Article 1927 Schmitt et al. Inhibitory Control of Hand and Eye Movements oculomotor and manual motor behaviors both follow common guiding principles. Yet, our findings document that eye movements are more difficult to inhibit than hand movements, and the timing, magnitude, and impact of cognitive control strategies used to support voluntary response inhibition are less robust for eye compared to hand movements. This suggests that inhibitory control systems also show unique characteristics that are behavior-dependent. This conclusion is consistent with neurophysiological evidence showing important differences in the architecture and functional properties of the neural systems involved in inhibitory control of eye and hand movements. It also suggests that characterizing inhibitory control processes in health and disease requires effector-specific analysis.NIH Autism Center of Excellence P50HD055751; MH092696, and the Kansas Center for Autism Research and Training Research Investment Council Strategic Initiative Gran

    Top-down control of visual sensory processing during an ocular motor response inhibition task

    Get PDF
    The study addressed whether top-down control of visual cortex supports volitional behavioral control in a novel antisaccade task. The hypothesis was that anticipatory modulations of visual cortex activity would differentiate trials on which subjects knew an anti- versus a pro-saccade response was required. Trials consisted of flickering checkerboards in both peripheral visual fields, followed by brightening of one checkerboard (target) while both kept flickering. Neural activation related to checkerboards before target onset (bias signal) was assessed using electroencephalography. Pretarget visual cortex responses to checkerboards were strongly modulated by task demands (significantly lower on antisaccade trials), an effect that may reduce the predisposition to saccade generation instigated by visual capture. The results illustrate how top-down sensory regulation can complement motor preparation to facilitate adaptive voluntary behavioral control

    Resting-State Brain Network Dysfunctions Associated With Visuomotor Impairments in Autism Spectrum Disorder

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Background: Individuals with autism spectrum disorder (ASD) show elevated levels of motor variability that are associated with clinical outcomes. Cortical–cerebellar networks involved in visuomotor control have been implicated in postmortem and anatomical imaging studies of ASD. However, the extent to which these networks show intrinsic functional alterations in patients, and the relationship between intrinsic functional properties of cortical–cerebellar networks and visuomotor impairments in ASD have not yet been clarified. Methods: We examined the amplitude of low-frequency fluctuation (ALFF) of cortical and cerebellar brain regions during resting-state functional MRI (rs-fMRI) in 23 individuals with ASD and 16 typically developing (TD) controls. Regions of interest (ROIs) with ALFF values significantly associated with motor variability were identified for for patients and controls respectively, and their functional connectivity (FC) to each other and to the rest of the brain was examined. Results: For TD controls, greater ALFF in bilateral cerebellar crus I, left superior temporal gyrus, left inferior frontal gyrus, right supramarginal gyrus, and left angular gyrus each were associated with greater visuomotor variability. Greater ALFF in cerebellar lobule VIII was associated with less visuomotor variability. For individuals with ASD, greater ALFF in right calcarine cortex, right middle temporal gyrus (including MT/V5), left Heschl's gyrus, left post-central gyrus, right pre-central gyrus, and left precuneus was related to greater visuomotor variability. Greater ALFF in cerebellar vermis VI was associated with less visuomotor variability. Individuals with ASD and TD controls did not show differences in ALFF for any of these ROIs. Individuals with ASD showed greater posterior cerebellar connectivity with occipital and parietal cortices relative to TD controls, and reduced FC within cerebellum and between lateral cerebellum and pre-frontal and other regions of association cortex. Conclusion: Together, these findings suggest that increased resting oscillations within visuomotor networks in ASD are associated with more severe deficits in controlling variability during precision visuomotor behavior. Differences between individuals with ASD and TD controls in the topography of networks showing relationships to visuomotor behavior suggest atypical patterns of cerebellar–cortical specialization and connectivity in ASD that underlies previously documented visuomotor deficits.NIMH K23 (MH092696)NIMH R01 (MH112734)Kansas Center for Autism Research and Training (K-CART) Research Investment Council Strategic Initiative GrantNICHD U54 Kansas Intellectual and Developmental Disabilities Research Center Award (U54HD090216)National Natural Science Foundation of China Award (grant no. 81371527

    Alterations in the functional neural circuitry supporting flexible choice behavior in autism spectrum disorders

    Get PDF
    Restricted and repetitive behaviors, and a pronounced preference for behavioral and environmental consistency, are distinctive characteristics of autism spectrum disorder (ASD). Alterations in frontostriatal circuitry that supports flexible behavior might underlie this behavioral impairment. In an functional magnetic resonance imaging study of 17 individuals with ASD, and 23 age-, gender- and IQ-matched typically developing control participants, reversal learning tasks were used to assess behavioral flexibility as participants switched from one learned response choice to a different response choice when task contingencies changed. When choice outcome after reversal was uncertain, the ASD group demonstrated reduced activation in both frontal cortex and ventral striatum, in the absence of task performance differences. When the outcomes of novel responses were certain, there was no difference in brain activation between groups. Reduced activation in frontal cortex and ventral striatum suggest problems in decision-making and response planning, and in processing reinforcement cues, respectively. These processes, and their integration, are essential for flexible behavior. Alterations in these systems may therefore contribute to a rigid adherence to preferred behavioral patterns in individuals with an ASD. These findings provide an additional impetus for the use of reversal learning paradigms as a translational model for treatment development targeting the domain of restricted and repetitive behaviors in ASD

    Differentiation of 3-O-Sulfated Heparin Disaccharide Isomers: Identification of Structural Aspects of the Heparin CCL2 Binding Motif

    Get PDF
    The presence of 3-O-sulfated glucosamine residues in heparin or heparan sulfate plays a role in binding to antithrombin III and HSV infection. In this study, tandem mass spectrometry was used to differentiate between two heparin disaccharide isomers containing variable sulfate at C6 in a common disaccharide and C3 in a more rare one. The dissociation patterns shown by MS2 and MS3 were clearly distinguishable between the isomers, allowing their differentiation and quantitation. Using this technique, we show that an octasaccharide with 11 sulfate groups with high affinity for inflammatory chemokine CCL2 does not contain 3-O-sulfated disaccharides

    Cortical and subcortical alterations associated with precision visuomotor behavior in individuals with autism spectrum disorder

    Get PDF
    In addition to core deficits in social-communication abilities and repetitive behaviors and interests, many 2 patients with autism spectrum disorder (ASD) experience developmental comorbidities, including 3 sensorimotor issues. Sensorimotor issues are common in ASD and associated with more severe clinical 4 symptoms. Importantly, sensorimotor behaviors are precisely quantifiable and highly translational, 5 offering promising targets for neurophysiological studies of ASD. We used functional MRI to identify 6 brain regions associated with sensorimotor behavior using a visually-guided precision gripping task in 7 individuals with ASD (N=20) and age-, IQ-, and handedness-matched controls (N=18). During 8 visuomotor behavior, individuals with ASD showed greater force variability than controls. BOLD signal 9 for multiple cortical and subcortical regions was associated with force variability, including motor and 10 premotor cortex, posterior parietal cortex, extrastriate cortex, putamen, and cerebellum. Activation in 11 right premotor cortex scaled with sensorimotor variability in controls, but not in ASD. Individuals with 12 ASD showed greater activation than controls in left putamen and left cerebellar lobule VIIb and activation 13 in these regions was associated with more severe clinically-rated symptoms of ASD. Together, these 14 results suggest that greater sensorimotor variability in ASD is associated with altered cortical-striatal 15 processes supporting action selection and cortical-cerebellar circuits involved in feedback-guided reactive 16 adjustments of motor output. Our findings also indicate that atypical organization of visuomotor cortical 17 circuits may result in heightened reliance on subcortical circuits typically dedicated to motor skill 18 acquisition. Overall, these results provide new evidence that sensorimotor alterations in ASD involve 19 aberrant cortical and subcortical organization that may contribute to key clinical issues in patients. 20 21 New and noteworthy: This is the first known study to examine functional brain activation during 22 precision visuomotor behavior in autism spectrum disorder (ASD). We replicate previous findings of 23 elevated force variability in ASD and find these deficits are associated with atypical function of ventral 24 premotor cortex, putamen, and posterolateral cerebellum, indicating cortical-striatal processes supporting 25 action selection and cortical-cerebellar circuits involved in feedback-guided reactive adjustments of motor 26 output may be key targets for understanding the neurobiology of ASD.NICHD 055751NIMH R01 12743-01NCATS TL1 TR002368,Kansas Center for Autism Research and Training (K-CART) Research Investment Council Strategic Initiative Gran
    • …
    corecore