20 research outputs found

    An analytical model of prominence dynamics

    Full text link
    Solar prominences are magnetic structures incarcerating cool and dense gas in an otherwise hot solar corona. Prominences can be categorized as quiescent and active. Their origin and the presence of cool gas (~10410^4K) within the hot (~10610^6K) solar corona remains poorly understood. The structure and dynamics of solar prominences was investigated in a large number of observational and theoretical (both analytical and numerical) studies. In this paper, an analytic model of quiescent solar prominence is developed and used to demonstrate that the prominence velocity increases exponentially, which means that some gas falls downward towards the solar surface, and that Alfven waves are naturally present in the solar prominences. These theoretical predictions are consistent with the current observational data of solar quiescent prominences.Comment: Update Final Journal Print Version along with other Metadat

    Propagation Characteristics of Acoustic Wave in Non-Isothermal Earth’s Atmospheres

    Get PDF
    Acoustic waves are those waves which travel with the speed of sound through a medium. H. Lamb (1909, 1910) had derived a cutoff frequency for stratified and isothermal medium for the propagation of acoustic waves. In order to find the cutoff frequency many methods were introduced after Lamb's work. In this paper, we have chosen the turning point frequency method following Musielak et.al(2006) Routh et. al.(2014) to determine cutoff frequencies for acoustic waves propagating in non-isothermal medium which can be applied to various atmospheres like solar atmosphere, stellar atmosphere, earth's atmosphere etc. Here, we have analytically derived the cutoff frequency and have analyzed and compared with the Lamb's cut-off frequency for earth's troposphere

    Elongation Factor Tu Prevents Misediting of Gly-tRNA(Gly) Caused by the Design Behind the Chiral Proofreading Site of D-Aminoacyl-tRNA Deacylase

    No full text
    <div><p>D-aminoacyl-tRNA deacylase (DTD) removes D-amino acids mischarged on tRNAs and is thus implicated in enforcing homochirality in proteins. Previously, we proposed that selective capture of D-aminoacyl-tRNA by DTD’s invariant, cross-subunit Gly-<i>cis</i>Pro motif forms the mechanistic basis for its enantioselectivity. We now show, using nuclear magnetic resonance (NMR) spectroscopy-based binding studies followed by biochemical assays with both bacterial and eukaryotic systems, that DTD effectively misedits Gly-tRNA<sup>Gly</sup>. High-resolution crystal structure reveals that the architecture of DTD’s chiral proofreading site is completely porous to achiral glycine. Hence, L-chiral rejection is the only design principle on which DTD functions, unlike other chiral-specific enzymes such as D-amino acid oxidases, which are specific for D-enantiomers. Competition assays with elongation factor thermo unstable (EF-Tu) and DTD demonstrate that EF-Tu precludes Gly-tRNA<sup>Gly</sup> misediting at normal cellular concentrations. However, even slightly higher DTD levels overcome this protection conferred by EF-Tu, thus resulting in significant depletion of Gly-tRNA<sup>Gly</sup>. Our in vitro observations are substantiated by cell-based studies in <i>Escherichia coli</i> that show that overexpression of DTD causes cellular toxicity, which is largely rescued upon glycine supplementation. Furthermore, we provide direct evidence that DTD is an RNA-based catalyst, since it uses only the terminal 2′-OH of tRNA for catalysis without the involvement of protein side chains. The study therefore provides a unique paradigm of enzyme action for substrate selection/specificity by DTD, and thus explains the underlying cause of DTD’s activity on Gly-tRNA<sup>Gly</sup>. It also gives a molecular and functional basis for the necessity and the observed tight regulation of DTD levels, thereby preventing cellular toxicity due to misediting.</p></div
    corecore