51 research outputs found

    Adopting multiview pixel mapping for enhancing quality of holoscopic 3D scene in parallax barriers based holoscopic 3D displays

    Get PDF
    The Autostereoscopic multiview 3D Display is robustly developed and widely available in commercial markets. Excellent improvements are made using pixel mapping techniques and achieved an acceptable 3D resolution with balanced pixel aspect ratio in lens array technology. This paper proposes adopting multiview pixel mapping for enhancing quality constructed holoscopic 3D scene in parallax barriers based holoscopic 3D displays achieving great results. The Holoscopic imaging technology mimics the imaging system of insects, such as the fly, utilizing a single camera, equipped with a large number of micro-lenses, to capture a scene, offering rich parallax information and enhanced 3D feeling without the need of wearing specific eyewear. In addition pixel mapping and holoscopic 3D rendering tools are developed including a custom built holoscopic 3D displays to test the proposed method and carry out a like-to-like comparison.This work has been supported by European Commission under Grant FP7-ICT-2009-4 (3DVIVANT). The authors wish to ex-press their gratitude and thanks for the support given throughout the project

    3D Depth Measurement for Holoscopic 3D Imaging System

    Get PDF
    Holoscopic 3D imaging is a true 3D imaging system mimics fly’s eye technique to acquire a true 3D optical model of a real scene. To reconstruct the 3D image computationally, an efficient implementation of an Auto-Feature-Edge (AFE) descriptor algorithm is required that provides an individual feature detector for integration of 3D information to locate objects in the scene. The AFE descriptor plays a key role in simplifying the detection of both edge-based and region-based objects. The detector is based on a Multi-Quantize Adaptive Local Histogram Analysis (MQALHA) algorithm. This is distinctive for each Feature-Edge (FE) block i.e. the large contrast changes (gradients) in FE are easier to localise. The novelty of this work lies in generating a free-noise 3D-Map (3DM) according to a correlation analysis of region contours. This automatically combines the exploitation of the available depth estimation technique with edge-based feature shape recognition technique. The application area consists of two varied domains, which prove the efficiency and robustness of the approach: a) extracting a set of setting feature-edges, for both tracking and mapping process for 3D depthmap estimation, and b) separation and recognition of focus objects in the scene. Experimental results show that the proposed 3DM technique is performed efficiently compared to the state-of-the-art algorithms

    Real Time Holoscopic 3D Video Interlacing

    Get PDF
    © © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.NVIDIA Corporatio

    Dynamic Hyperlinker: Innovative Solution for 3D Video Content Search and Retrieval

    Get PDF
    Recently, 3D display technology, and content creation tools have been undergone rigorous development and as a result they have been widely adopted by home and professional users. 3D digital repositories are increasing and becoming available ubiquitously. However, searching and visualizing 3D content remains a great challenge. In this paper, we propose and present the development of a novel approach for creating hypervideos, which ease the 3D content search and retrieval. It is called the dynamic hyperlinker for 3D content search and retrieval process. It advances 3D multimedia navigability and searchability by creating dynamic links for selectable and clickable objects in the video scene whilst the user consumes the 3D video clip. The proposed system involves 3D video processing, such as detecting/tracking clickable objects, annotating objects, and metadata engineering including 3D content descriptive protocol. Such system attracts the attention from both home and professional users and more specifically broadcasters and digital content providers. The experiment is conducted on full parallax holoscopic 3D videos “also known as integral images”.ICT program as Project 3D VIVAN
    • …
    corecore