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Abstract 15 
The widespread popularity of additive manufacturing in most industries ranging from biomedical 16 

to aerospace suggests a transformation in manufacturing, which has recently also emerged in 17 

the construction sector. This paper presents an active system for the extrusion-based 3D 18 

printing of cementitious materials. The system can be extended to other materials and scaled 19 

up with slight hardware modifications. The proposed system uses an unconventional yet 20 

simplistic approach to generate a consistent output of material throughout the printing process. 21 

The effectiveness of the extruder is demonstrated through an extensive printing and testing of 22 

various cementitious-based materials. The printing and material parameters, which are 23 

essential for high mechanical strength printed object were investigated and optimized through a 24 

logical iterative loop of trials. The results showed the shape retention of 3D printed objects using 25 

the proposed design of extrusion-based system in conjunction with optimized rheology of 26 

cementitious-based materials was encouraging for larger scale 3D printing.     27 

Keywords:  3D Printing; Extrusion Based system; Geopolymers   28 

1. Introduction  29 

Additive manufacturing is becoming one of the fastest developing key instruments in the 30 

construction industry. The term Additive manufacturing (AM), popularly known as 3D printing, is 31 

the process of additively joining materials to make a physical 3D object from a digital 3D 32 

model [1]. Several AM technology methods, including fused deposition modeling (FDM), 33 
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selective laser melting (SLM), Stereolithography (SLA), and digital light processing (DLP) have 34 

been adopted [2]. A variety of metals, polymers, composites, and ceramics can be utilized for 35 

AM, although, the use of these feedstock is dependent on the type of AM process used [3–5]. 36 

Some of the benefits of deploying AM in the construction sector are its ability to print complex 37 

geometric shapes with minimum waste, which makes it a cost-effective solution for the 38 

construction industry [6]. The construction industry so far has been developed around two 39 

leading AM technologies, the extrusion-based AM method, with some effort on developing a 40 

scaled-up 3D printing technology for cementitious materials. Existing additive manufacturing 41 

systems were originally devolved for small-scale products prototyping. The greatest challenge 42 

that the construction sector faces is the scaling up of existing AM technologies. The gantry 43 

solution simply represents a direct scaling-up of AM to additive construction – in other words a 44 

giant 3D printer [7,8]. In a gantry system, a set of motors are controlled in any direction defined 45 

by along the X, Y and Z-axes in Cartesian coordinates. Gantry solutions were first developed for 46 

concrete extrusion in 2001, and Khoshnevis et al. from the University of South California in the 47 

US patented the combination of this solution with the material process under the name “Contour 48 

Crafting” [9]. Contrasting Contour Crafting, where the focus had always been on entire 49 

constructions fabricated in one-piece, Freeform Construction focuses on the fabrication of full-50 

scale construction components such as walls and panels [10]. This system works on the same 51 

principle as Contour Crafting and includes a printing head digitally controlled by a CNC machine 52 

to move in the X, Y and Z directions along three chain-driven tubular steel beams. A material 53 

hopper was mounted on top of the printing head and was connected to a pump that carried the 54 

material to the printing nozzle [11] . 55 

There are two principal components of any extrusion-based 3D printer, (i) the extruder 56 

assembly and (ii) the positioning system. The extruder’s ability to accurately deposit the precise 57 

quantity of material over varying distances is fundamental to the printing process and final 58 

output. However, accuracy of the extruded material is not significant when the positioning 59 

system is not accurate. Therefore, both the positioning system and the extruder are needed to 60 
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build a visually and geometrically accurate structure. The positioning and delivery system are 61 

usually standard machinery, i.e. gantry or robotic arm and a mortar pump for delivering the 62 

materials to the nozzle. The extruder and delivery systems have the most significant influence 63 

on whether or not extrusion printing will produce a successfully printed object [12]. Hence, this 64 

paper proposes a robust active extrusion nozzle system design and a printing platform that 65 

enables the 3D printing of various cementitious materials. The 3D printing system designation 66 

contains an Extrusion system design including Nozzle design, Hopper prototype, scraper 67 

design, and positioning system design. The proficiency of the presented system was assessed 68 

by printing three geopolymers mixtures with low (i.e. Mix-1), medium (i.e. Mix-2), and high (i.e. 69 

Mix-3) printability ranges in terms of flow-ability, setting time, and open time. The effects of 70 

adopted printing system was investigated by inspecting  each printed sample's shape retention 71 

and comparison between the properties of printed specimens and conventionally casted 72 

counterparts in terms of density, flexural and compressive strength. Moreover, the buildability 73 

test of the selected mix was conducted in 25 subsequent layers to assess the capacity of the 74 

designed system to print medium-scale structures. 75 

2. Extrusion system design 76 

The extrusion system of 3D printer is an extremely important part of the overall AM process. 77 

Many parameters influence the extrusion of cementitious-based materials.  78 

In this study, the design of the hopper and extrusion system was a result of an iterative trial and 79 

error method based on cementitious-based material rheology, e.g. workability, flow-ability and 80 

extrudability.  81 

Figure 1 a  shows the sketch for the extrusion system. The design includes a hopper to feed in 82 

the material, an extrusion auger screw to transport materials down and through the nozzle, the 83 

nozzle that shapes the material extrusion output and a geared motor to drive the screw. 84 

Additionally, a scraper is added to agitate the material and aid with extrusion reliability. Figure 85 

1b and c  show the CAD drawing of the proposed extrusion hopper. The barrel’s diameter of 37 86 

mm is chosen based on the auger screw used for this study. However, the hopper slopes 87 
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angles were explicitly designed to try to achieve a mass flow pattern, as illustrated in Figure 1d  88 

and e . For many materials, flow problems such as erratic flow, materials segregation, and 89 

particle degradation in stagnant regions can be eliminated by ensuring that a mass flow pattern 90 

exists in the hopper [13]. Given the nature of the printed cementitious material and the 91 

importance of keeping its homogeneity, the hopper design avoids any sharp or steep edges that 92 

add unnecessary pressure to the mixture ensuring a smooth flow to and out of the nozzle. 93 

Figure 1b  illustrates a transparent rendered view of the proposed extrusion system. While 94 

Figure 1c  shows an assembled rendered view of the extrusion system attached to the Open 95 

build rail, which will then be attached to the positioning platform. 96 

 97 
Figure 1 – (a) Proposed extrusion system idea sketch, (b) transparent render of the proposed 98 
extrusion and (c) assembled render; (d) funnel flow; (e) mass flow 99 
 100 
2.1 Hopper prototype 101 

The implementation of the design was possible by using sheet metal fabrication. The hopper 102 

was designed using Autodesk Inventor, and then laser cut using a plasma machine, as shown 103 

in Figure 2a . The 1.5 mm thick stainless-steel sheet is then bent to shape and welded together, 104 

as shown in Figure 2b .  105 



Page 5 of 22 
 

 106 
Figure 2  – (a) Plasma cut sheet metals for the proposed hopper and (b) proposed hopper 107 
prototype  108 

2.2 Scraper 109 

A form of agitation tool is required to obtain a suitable extrusion for the concrete like materials, 110 

e.g. non-Newtonian, pseudo-plastic fluid with a typical shear thinning behavior [14]. Agitation 111 

contributes to the pump-ability of the cementitious materials by lowering the effective shear 112 

stress due to the reduction in the friction of the internal particles [15]. Hence, a scraper was 113 

designed and implemented to the hopper, as shown in Figure 3 . The scraper creates a further 114 

mixing effect of the materials inside the hopper and scrapes the sides to completely discharge 115 

the cementitious materials. Therefore, it can be used as a stand-alone extrusion system without 116 

an external pump for small to medium-sized prints. The scraper is an integral part of the 117 

extrusion system with the potential of adding a vibration motor to further improve the flow-ability 118 

and compactness of the cementitious-based materials. Additionally, it prevents clogging of 119 

nozzle. 120 

 121 

Figure 3 –  The implementation of the scraper design into the hopper 122 
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2.3 Nozzle design 123 

In order to achieve a successful print, the nozzle size plays a remarkable role in shaping the 124 

materials output and determining the buildability of the final structure. Based on the designed 125 

object, e.g. its dimension and necessary resolution, the nozzle size can be modified to a smaller 126 

or a larger size. Figure 4a  shows the circular nozzle including a holder, upper and lower nozzle 127 

and barrel clamp. This system gets attached to the hopper’s barrel which can simply be 128 

attached and detached. Figure 4b  illustrates different upper nozzle sizes used in this study to 129 

examine the best performing nozzle size for the cementitious based materials printing.  130 

To select the optimum nozzle size, two samples were printed for each nozzle dimeter as seen in 131 

Figure 5 . The first one is a rectangular shaped sample (Figure 5 a,b,c)  that is used to assess 132 

the ability of the nozzles to stack layers on top of each other without collapsing (i.e. the 133 

buildability of the nozzle). The second sample (Figure 5 d,e,f ) is determining the extrusion 134 

width produced by each nozzle and the details they are capable of printing. The printed objects 135 

were printed continuously in a zigzag road map. The smaller dimeter of the nozzle leads to finer 136 

details of printed objects. However, this comes at the cost of a lower buildability factor as 137 

observed in Figure 5a . On the other hand, a larger nozzle will produce a courser structure but 138 

an improved buildability. Throughout this study, the 20 mm nozzle was used to achieve the best 139 

buildability results.     140 

 141 
Figure 4  – (a) detailed assembly drawing of the proposed nozzle, (b) prototyped nozzles using 142 
3D printing 143 
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 144 
Figure 5 – Printed samples using various nozzles dimeters (a,d) using a 10mm nozzle (b,e) 15 145 
mm nozzle and (c,f) 20 mm nozzle 146 

2.4 Positioning system design 147 

The second fundamental system that is needed to produce geometrically and vitally accurate 148 

printed objects is the positioning system. The positioning system used in this study, is a 149 

modified CNC gantry system, based on the open source extrusion rails Open-Builds platform 150 

(Workbee CNC by OOZNEST - UK). The platform is designed to print small to medium concrete 151 

samples for the purpose of developing a sustainable concrete mixture for 3D printing. Thus, a 152 

reasonable print area is required to print samples and small structure. Hence, the printer 153 

working area is; 490 x 400 x 300 mm, which is a sufficient to examine mechanical properties 154 

and buildability of printed samples. The gantry is a Cartesian XYZ platform, with the axes driven 155 

by NEMA 23 Stepper motors, UK coupled with TB6600 drivers. The drivers are controlled using 156 

a RAMP board which is a common 3D printers controller based on an Arduino Mega 2560 157 

microcontroller, UK that communicates to a PC over a serial port. The open source firmware 158 

used to control the board is Klipper. Figure 6  shows the final implantation of the positioning 159 

system with the control unit.  160 
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 161 
Figure 6  – Positioning system with the control unit 162 

 163 

 164 

 165 

2.5 Printing path and parameters 166 

Printing path, gantry speed, extrusion rate, and layer height are known as basic 3D printing 167 

process parameters. In this study, in order to come up with the optimal printing parameters, 168 

various 3D models were designed. Initially, a 150x150x100 mm rectangular path (Figure 7a ) 169 

was 3D printed in order to investigate the other printing parameters such as; gantry motion 170 

speed, layer height or printing resolution and extrusion rate. It should be noticed that for all the 171 

experiments the nozzle size was set to 20 mm, as it produced the best flow rate with the 172 

geopolyemers. The objects 3D prints were conducted with a printer head speed of 30 mm/s, 173 

layer height of 15 mm, and an extrusion rate of 50% (see Figure 7a) . As it can be observed, the 174 

primary settings led to unsuccessful print, which was because of the large layer height. 175 

Therefore, the settings were adjusted, i.e. decreasing the speed to 20 mm/s, and the layer 176 

height to 10 mm but keeping the same extrusion rate, led to successful print, shown in Figure 177 

7b. It is worth mentioning that the extrusion rate, controlled by speed of extruder’s motor, will 178 
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vary depending on the consistency of mixture throughout testing. Figure 7c , presents a smaller 179 

rectangular block measuring 180x80x60 mm, that shows good buildability and shape stability. 180 

Nevertheless, a cyclic effect is evident on the middle-printed layers. This phenomenon is also 181 

observed quite commonly in polymer 3D printing extrusion systems and is typically triggered by 182 

a partially filled section on the screw [16]. In order to reduce the rhythmic surges, improved 183 

synchronisation of gantry speed, extrusion rate are required, and alternatively redesigning of the 184 

screw could be beneficial in eliminating this phenomenon. 185 

 186 
Figure 7  – Initial printed parts using the proposed systems 187 

3. Cementitious-based materials for printing  188 

Several additives incorporation have been proposed to improve the mechanical and physical 189 

performance of Ordinary Portland cement-based composites [17,18], however, the never-190 

ending production of cement has amplified the amount of CO2 being released, which contributes 191 

to the issue of global warming and climate change [19]. Therefore, a more sustainable approach 192 

using the existing admixtures to replace conventional Ordinary Portland cement-based 193 

composites is of vital importance. Various researchers have carried out many studies on 194 

geopolymer composites [20–22], which exhibit similar or better structural load bearing capacity 195 

and durability when compared to conventional concrete. Ordinary Portland cement is generally 196 
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not required in the manufacturing process of geopolymer concrete. The main ingredients of 197 

geopolymer are: (i) alkaline solutions including sodium hydroxide (NaOH), sodium silicate 198 

(Na2SiO3), potassium hydroxide (KOH), or potassium silicate (K2SiO3), (ii) aluminosilicate 199 

sources of by-product materials including ground granulated blast furnace slag (GGBS) and fly 200 

ash (FA), and (iii) fine and coarse aggregates.  201 

For this study, the as-received materials, including (i) Fly ash (FA) (Cemex, UK) following the 202 

BS EN 450-1:2012; (ii) Ground-granulated blast furnace slag (GGBS) (Hanson UK); (iii) Silica 203 

fume (SF) (J. Stoddard & Sons Ltd); (iv) Sodium silicate (Na2SiO3) (Solvay SA, Portugal); and 204 

(v) sodium hydroxide 98% NaOH (Fisher Scientific, Germany), were used for preparing the 205 

geopolymers. The microstructure morphology and physical state of each as received materials, 206 

including FA, GGBS, and SF, were assessed by employing a scanning electron microscope 207 

(SEM) (Supra 35VP) and reported in Figure 8a-c . 208 

 209 
Figure 8  – Microstructure of as-received aggregates, (a) GGBS, (b) FA, and (c) micro-SF. 210 

3.1 Mixing procedure and design formulations  211 

In order to assess the compatibility evaluation of the designed system in terms of extrusion and 212 

printing the geopolymers, three geopolymer mixes (see Table 1 ) were prepared. The total 213 

activator content (NaOH + Na2SiO3) was 18% by the weight of the binder for all the mixtures. In 214 

this study, the GGBS and SF content ranged between 15-35% and 5-15%, respectively, by the 215 

total weight of binder (FA+GGBS+SF). For Mix 3, the SF and GGBS dosage reduction was 216 

substituted by increasing the FA dosage by 70%. The oven-dried river sand was firstly sieved 217 

and then added to the binder (sand/binder ratio: 0.55) with the size range of 40% of grade 0-218 

0.5mm and 60% of 0.5-1mm for Mix 1, 3, and substituted to 40% of grade 0.5-1mm and 60% of 219 
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grade 0-0.5mm for Mix-2. The materials were dry mixed for 2 minutes using a domestic mixer 220 

device (Kenwood, Germany) at 250rpm. The sodium hydroxide and sodium silicate solutions 221 

were mixed up for 5 minutes at 700rpm with the constant ratio of Na2SiO3: NaOH = 2:1 in order 222 

to achieve the alkali-activator. Finally, the activator liquid solution was gradually incorporated to 223 

the dry materials, and the resulting paste was stirred at different mixing rates to form a 224 

homogeneous geopolymer mixture. Six samples of 40 x 40 x 160 were prepared for each 225 

mixture, including, three samples for the conventionally casted specimens and three samples 226 

for the printed parts utilizing the designed 3D printer extruder. All the samples were first 227 

preserved in a controlled environment at 60°C for 24 hours immediately after the demolding and 228 

printing process, followed by keeping them at ambient temperature (i.e. 20°C) for seven days. 229 

Table 1 –  Mix design formulations 230 
Mixture 
Name 

Binder  Aggregate Na2SiO3: NaOH 
ratio FA 

Wt% 
GGBS 
Wt% 

SF 
Wt% 

 0-0.5mm 
Wt% 

0.5-1mm 
Wt% 

Mix-1 60 35 5  40 60 2:1 
Mix-2 60 25 15  60 40 2:1 
Mix-3 70 15 15  40 60 2:1 

3.2 Testing of cementitious-based materials   231 

3.2.1 Fresh properties 232 

Several tests have been conducted to evaluate the flow-ability of geopolymers before 233 

commencing the printing process. Flow table test was assessed following the BS EN 1015-234 

3:1999 and IS 4031(Part 7):1988 to evaluate the flow-ability of fresh mixtures. In this test, the 235 

mould apparatus placed at the centre of the flow table disc was filled with two subsequent 236 

layers of geopolymer. After 20 seconds, the mould apparatus was removed gently in a vertical 237 

direction, and the flow table was jolted continuously every one minute for 15 times. The results 238 

were recorded by measuring the spread of geopolymer in two perpendicular directions 239 

employing calliper after 0, 5, and 15 minutes, using the following equation. 240 

���� (%) =

��
�
�


�
× 100   (1) 241 
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The Vicat test was defined the setting time of the fresh mixtures following the BS EN480-242 

2:2006. For each composition, the Vicat apparatus was filled with geopolymers paste. The 243 

penetration of a Vicat needle (1mm diameter) in the fresh geopolymer was visually measured 244 

every 3 minutes until the needle penetration reached 4 mm. 245 

The open time test was performed by the simple-line printing of geopolymers in a dimension of 246 

250mm x 24mm in a periodic resting time of 5 minutes until the discontinuity of the printed line 247 

occurred. This test method completely shows the period that the fresh geopolymers show 248 

acceptable workability for the printing process. 249 

Shape retention was evaluated to understand the capability of the designed extruder to print the 250 

wide range of geopolymer in terms of flow-ability, open time, and setting time. In this regard, six 251 

subsequent layers of geopolymer paste were printed, and then the printed sample was allowed 252 

to set for approximately 60 minutes. After setting the printed object, the appearance of each 253 

sample was visually examined.  254 

The rheology tests were carried out to evaluate the fluidity of fresh geopolymers using 255 

KinexusLab + rheometer (Malvern Instruments Ltd., UK) equipped with the rSpace software 256 

(Malvern Panalytical Ltd, UK) immediately after mixing. The rheological terms, including shear 257 

stress (t) and apparent viscosity (η) versus shear rate (γ) (varied between 0.1 s-1 and 30 s-1 258 

over 22 intervals), were recorded. Due to the non-Newtonian nature and pseudoplastic 259 

behaviour of fresh geopolymer mixtures [23], modified-Bingham model (MBM) was selected 260 

among several other fitting models [14,24,25] (i.e. Bingham model (BM) and Herschel–Bulkley 261 

model (HB)) to accurately calculate the rheology parameters of geopolymers (i.e. Yield shear 262 

stress (τ0) and plastic viscosity (ηp)). 263 

� = �� + �� ∙ � + ���            (2) 264 

3.2.2 Mechanical properties  265 

According to BS EN 196-1:2016, the mechanical property (i.e. flexural and compressive 266 

strength) of each mixture (three specimens for each mix), both casted and printed, were 267 

evaluated after seven days of curing. Universal testing machine (Instron 5960, United Kingdom) 268 
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equipped with 150kN load cell at a constant loading rate of 1 mm/min, with the perpendicular 269 

loading direction to the printing path. Moreover, the density of each mixture was calculated by 270 

weight and volume measurements by using a digital caliper and an analytical balance (Mettler-271 

Toledo Ltd.). 272 

3.3. Research plan  273 

Figure 9  illustrates the strategy for this study. The work started in parallel for extruder and 274 

geopolymer mix design. The steps required for each of the designs were critically evaluated 275 

through various individual tests in order to move to the printing trials and error stage.  276 

 277 
Figure 9 Experimental framework and testing programme 278 

4. Results and discussions  279 

4.1 Fresh properties 280 

The fresh properties of geopolymers including, shape stability, workability, and flow-ability are 281 

the most critical factors for successful 3D printing, which can be modified by changing the 282 

features of aggregates (i.e. shape, size, surface textures and gradation, and the volume 283 

fraction) [26]. It can be seen that all the fresh properties of geopolymers, including flow table, 284 

setting time, and open time are linked together. In this study, the minimum and the maximum 285 



Page 14 of 22 
 

flow-ability values was registered by Mix-1 and Mix-3 (see Figure 10a ), with an initial (i.e. 0 286 

minutes) flow-ability of 23% and 52%, respectively. The results also indicated that by replacing 287 

GGBS with FA and SF, the mixtures' setting time was considerably increased from 12 to 47 288 

minutes for Mix-1 to Mix-3, respectively. The open time test results (Figure 10c ) shows a 289 

gradual increase from 10 to 35 minutes for Mix-1 to Mix-3, respectively. Moreover, the setting 290 

time results also show a similar trend, increasing from 10 to 40 minutes for Mix-1 to Mix-3, 291 

respectively (see Figure 10b ). 292 

Figure 10d  shows the plastic viscosity and yield shear stress of geopolymers. The results 293 

revealed that the selected geopolymers have different rheological parameters that are 294 

correlated to their fresh properties. Mix-1 showed a maximum yield shear stress and plastic 295 

viscosity values (i.e. 56.29 Pa and 17.06 Pa·s), and they gradually decreased to 41.56 Pa and 296 

16.46 Pa·s for Mix-2, and 25.98 Pa and 8.75 Pa·s for Mix-3, respectively.  297 

The fresh property enhancement of geopolymers can be generated by the decrease in the 298 

content of GGBS in geopolymers, which prevents the rapid setting of the mixtures. 299 

Lampropoulos et al. and Xie et al. also indicated that the high dosage of GGBS increases the 300 

CaO content in the mixtures, which leads to forming the gel components (i.e. C–S–H and the 301 

3D stable silico-aluminate structure) by the early-age geopolymerization [27,28]. On the other 302 

hand, the substitution of angular shape GGBS particles with rounded and spherical shape 303 

particles (i.e. FA and SF), works on reducing the cohesiveness of paste and induces a 304 

lubrication effect within the mixture [26,28,29]. 305 
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 306 
Figure 10 Fresh properties of designed geopolymers; (a) Flow-ability, (b) setting time, (c) open 307 
time, and (d) rheology test. 308 
 309 
In order to assess the efficiency of the designed system, all the geopolymers with different fresh 310 

properties have been tested by visually monitoring the shape retention of the printed parts, which 311 

is essential to evaluate the printing performance of the designed system. The results revealed 312 

that the extrusion system is able to print a variety of mixtures with both high and low flow-ability 313 

without any restrictions. however, the  shape retention of printed layers were not adequate for 314 

upscaling and printing larger objects. As can be seen in Figure 11 , The best performance in 315 

shape retention was recorded for Mix-2 concerning the other geopolymers (i.e. Mix-1 and Mix-3) 316 

both for the first layer height (i.e. 7.5mm) and the difference between the first layer and last layer 317 

height (i.e. 14.5 – 7.5 = 7 mm). This could be attributed to the optimum values of Mix-2 in setting 318 

time and open time (i.e. 33 and 20 minutes, respectively) which contributes to stabilizing its 319 

shape during the deposition of the upper subsequent layers. 320 
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 321 
Figure 11 – Shape-retention ability of geopolymer composites. 322 

4.2 Mechanical properties of cementitious-based mat erials  323 

Mechanical performance (i.e. compressive and flexural strength) and the density of each 324 

geopolymer mix in both conventionally casted and printed samples have been measured and 325 

compared (see Figure 12a-c ).  326 

The flexural and compressive strength evaluation of 3D printed and casted specimens (Figure 327 

12a, c) in the perpendicular direction of load indicated that the flexural strength of the 3D printed 328 

samples is lower or comparable to that of casted samples. The density evaluations also 329 

revealed that the density gap between the casted and printed sample has changed by 330 

decreasing the GGBS content in which for Mix-1, the density values of the casted sample is 331 

higher than printed samples (i.e. 2.12 g/cm³ for CM1 and 2.06 g/cm³ for PM1). In contrast, for 332 

the other mixtures, the density of printed samples is higher than that of casted samples. The 333 

outcomes are completely aligned with the results reported by Panda et al., which indicated that 334 

the high-pressure application during the extrusion process increases the density from 1500 335 

kg/m3 for casted specimens to 2050 kg/m3 for geopolymer 3D printed samples [30]. The results 336 

are evident that by decreasing the GGBS content, the mechanical property gap between the 337 

casted and printed samples decreased. This could be assessed by the gradual increase in 338 

setting time and flow-ability of geopolymers from Mix-1 to Mix-3 (see Figure 10 a-b ), which 339 

facilitate the compaction during the extrusion process, leads to the higher porosity refinement 340 

and densification concerning the conventionally casted samples [31]. Moreover, the flexural and 341 

compressive strength of conventionally casted samples decreased from 11.3 and 66.9 MPa for 342 

Mix-1(i.e. CM1) to 10.5 and 50.3 MPa for Mix-2 (i.e. CM2) and 9.1 and 43.7 MPa for Mix-3 (i.e. 343 

CM3), respectively. According to Xie et al., the reason could be due to the decrease in sodium 344 
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aluminosilicate (N-A-S-H) and calcium aluminosilicate (C-A-S-H) dosage in the mixture as a 345 

result of GGBs dosage reduction which prevents the formation of dense structure [27]. 346 

 347 
Figure 12 –  Mechanical performance and density of PM (printed) and CM (casted) 348 
geopolymers, (a) flexural strength, (b) compressive strength, and (c) density 349 

 350 
Finally, after identifying the appropriate feedstock (i.e. Mix-2) in terms of adequate flow-ability, 351 

mechanical property, shape stability, and buildability, the designed 3D printer and extrusion 352 

system were utilized to perform the buildability test. The outcomes revealed that the developed 353 

system is able to correctly print the object in 25 subsequent layers with approximately 250 mm 354 

height (see Figure 13) . The better shape stability of the first layer (i.e. 8.7mm) can act as a 355 

base to tolerate the upper layer's weight and, consequently, resulting in better presentation of 356 

this mixture for printing the large-scale structures [22]. 357 

 358 
Figure 13 – Buildability test of Mix-2 with the designed 3D printer system. 359 

5. Conclusions 360 
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The main objective of this paper was to develop an extrusion-based 3D printing system that 361 

enables geopolymeric cementitious-based materials in a variety of printability ranges to be 362 

tested without using expensive equipment such as robotic arms. 363 

The results of this paper elucidate the capability of the designed extruder and positioning 364 

system to print the full range of cementitious materials with high (i.e. Mix-3), medium (i.e. Mix-2) 365 

and low (i.e. Mix-1) flow-ability. Moreover, the proposed designed extruder is able to compress 366 

the fresh cementitious mixture during the extrusion process, densify the printed object, which 367 

subsequently leads to a decrease in the flexural and compressive strength gap between printed 368 

and conventionally casted samples in the hardened state.  369 

An adequate medium-scale object (i.e. 25 layers, 250mm height) without any disruption and 370 

collapse was printed using the designed 3D printing system.  The optimized printing 371 

parameters, were: nozzle size of 20mm, gantry speed of 20mm/s, layer height of 15 mm, and 372 

an extrusion rate of 50%, On the other hand, the optimum mix i.e., Mix-2, illustrated the 373 

optimum fresh and hardened properties (i.e. 20 min for open time, 33 min for setting time, 8.1 374 

MPa for flexural and 43.8 MPa for compressive strength). 375 

 376 

 377 
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