26 research outputs found
Metagenomics Reveals the Influence of Land Use and Rain on the Benthic Microbial Communities in a Tropical Urban Waterway
Growing demands for potable water have led to extensive reliance on waterways in tropical megacities. Attempts to manage these waterways in an environmentally sustainable way generally lack an understanding of microbial processes and how they are influenced by urban factors, such as land use and rain. Here, we describe the composition and functional potential of benthic microbial communities from an urban waterway network and analyze the effects of land use and rain perturbations on these communities. With a sequence depth of 3 billion reads from 48 samples, these metagenomes represent nearly full coverage of microbial communities. The predominant taxa in these waterways were Nitrospira and Coleofasciculus, indicating the presence of nitrogen and carbon fixation in this system. Gene functions from carbohydrate, protein, and nucleic acid metabolism suggest the presence of primary and secondary productivity in such nutrient-deficient systems. Comparison of microbial communities by land use type and rain showed that while there are significant differences in microbial communities in land use, differences due to rain perturbations were rain event specific. The more diverse microbial communities in the residential areas featured a higher abundance of reads assigned to genes related to community competition. However, the less diverse communities from industrial areas showed a higher abundance of reads assigned to specialized functions such as organic remediation. Finally, our study demonstrates that microbially diverse populations in well-managed waterways, where contaminant levels are within defined limits, are comparable to those in other relatively undisturbed freshwater systems
Ecogenomics reveals metals and land-use pressures on microbial communities in the waterways of a megacity
Networks of engineered waterways are critical in meeting the growing water demands in megacities. To capture and treat rainwater in an energy-efficient manner, approaches can be developed for such networks that use ecological services from microbial communities. Traditionally, engineered waterways were regarded as homogeneous systems with little responsiveness of ecological communities and ensuing processes. This study provides ecogenomics-derived key information to explain the complexity of urban aquatic ecosystems in well-managed watersheds with densely interspersed land-use patterns. Overall, sedimentary microbial communities had higher richness and evenness compared to the suspended communities in water phase. On the basis of PERMANOVA analysis, variation in structure and functions of microbial communities over space within same land-use type was not significant. In contrast, this difference was significant between different land-use types, which had similar chemical profiles. Of the 36 environmental parameters from spatial analysis, only three metals, namely potassium, copper and aluminum significantly explained between 7% and 11% of the variation in taxa and functions, based on distance-based linear models (DistLM). The ecogenomics approach adopted here allows the identification of key drivers of microbial communities and their functions at watershed-scale. These findings can be used to enhance microbial services, which are critical to develop ecologically friendly waterways in rapidly urbanizing environments