8,534 research outputs found

    UHF and VHF radar observations of thunderstorms

    Get PDF
    A study of thunderstorms was made in the Summer of 1985 with the 430-MHz and 50-MHz radars at the Arecibo Observatory in Puerto Rico. Both radars use the 300-meter dish, which gives a beam width of less than 2 degrees even at these long wavelengths. Though the radars are steerable, only vertical beams were used in this experiment. The height resolution was 300 and 150 meters for the UHF and VHF, respectively. Lightning echoes, as well as returns from precipitation and clear-air turbulence were detected with both wavelengths. Large increases in the returned power were found to be coincident with increasing downward vertical velocities at UHF, whereas at VHF the total power returned was relatively constant during the life of a storm. This was attributed to the fact that the VHF is more sensitive to scattering from the turbulence-induced inhomogeneities in the refractive index and less sensitive to scatter from precipitation particles. On occasion, the shape of the Doppler spectra was observed to change with the occurrence of a lightning discharge in the pulse volume. Though the total power and mean reflectivity weighted Doppler velocity changed little during these events, the power is Doppler frequency bins near that corresponding to the updraft did increase substantially within a fraction of a second after a discharge was detected in the beam. This suggests some interaction between precipitation and lightning

    Investigating 16O with the 15N(p,{\alpha})12C reaction

    Full text link
    The 16O nucleus was investigated through the 15N(p,{\alpha})12C reaction at excitation energies from Ex = 12 231 to 15 700 keV using proton beams from a 5 MeV Van de Graaff accelerator at beam energies of Ep = 331 to 3800 keV. Alpha decay from resonant states in 16O was strongly observed for ten known excited states in this region. The candidate 4-alpha cluster state at Ex = 15.1 MeV was investigated particularly intensely in order to understand its particle decay channels.Comment: Submitted for Proceedings of Fourth International Workshop on State of the Art in Nuclear Cluster Physics (SOTANCP4), held from May 13 - 18, 2018 in Galveston, TX, US

    Effect of dislocations on properties of heteroepitaxial InP solar cells

    Get PDF
    The apparently unrelated phenomena of temperature dependency, carrier removal and photoluminescence are shown to be affected by the high dislocation densities present in heteroepitaxial InP solar cells. Using homoepitaxial InP cells as a baseline, it is found that the relatively high dislocation densities present in heteroepitaxial InP/GaAs cells lead to increased volumes of dVoc/dt and carrier removal rate and substantial decreases in photoluminescence spectral intensities. With respect to dVoc/dt, the observed effect is attributed to the tendency of dislocations to reduce Voc. Although the basic cause for the observed increase in carrier removal rate is unclear, it is speculated that the decreased photoluminescence intensity is attributable to defect levels introduced by dislocations in the heteroepitaxial cells

    Polarimetric clutter modeling: Theory and application

    Get PDF
    The two-layer anisotropic random medium model is used to investigate fully polarimetric scattering properties of earth terrain media. The polarization covariance matrices for the untilted and tilted uniaxial random medium are evaluated using the strong fluctuation theory and distorted Born approximation. In order to account for the azimuthal randomness in the growth direction of leaves in tree and grass fields, an averaging scheme over the azimuthal direction is also applied. It is found that characteristics of terrain clutter can be identified through the analysis of each element of the covariance matrix. Theoretical results are illustrated by the comparison with experimental data provided by MIT Lincoln Laboratory for tree and grass fields

    Solar electric propulsion for Mars transport vehicles

    Get PDF
    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed

    X-ray photoemission spectroscopy determination of the InN/yttria stabilized cubic-zirconia valence band offset

    Get PDF
    The valence band offset of wurtzite InN(0001)/yttria stabilized cubic-zirconia (YSZ)(111) heterojunctions is determined by x-ray photoemission spectroscopy to be 1.19±0.17 eV giving a conduction band offset of 3.06±0.20 eV. Consequently, a type-I heterojunction forms between InN and YSZ in the straddling arrangement. The low lattice mismatch and high band offsets suggest potential for use of YSZ as a gate dielectric in high-frequency InN-based electronic devices

    Direct Determination of the Kinetics of Oxygen Diffusion to the Photocytes of a Bioluminescent Elaterid Larva, Measurement of Gas- and Aqueous-Phase Diffusional Barriers and Modelling of Oxygen Supply

    Get PDF
    We describe the development and use of a direct kinetic technique to determine the time taken for oxygen to diffuse from the external environment into the light-producing cells (photocytes) in the prothorax of bioluminescent larvae of Pyrearinus termitilluminans. This was achieved by measuring the time course of the pseudoflash induced through sequential anoxia followed by normoxia. We have also determined the separate times taken for this oxygen diffusion in gaseous and tissue (predominantly aqueous) phases by using helium and nitrogen as the carrier gas. Of the total time taken for diffusion, that in the gas phase required 613+/-136 ms (mean +/- s.e. m., N=5) whilst that in the aqueous phase required 1313+/-187 ms. These values imply pathlengths of diffusion in the gaseous and aqueous phases of 4.80x10(-)(3)+/-0.53x10(-)(3) and 8. 89x10(-)(5)+/-0.61x10(-)(5 )m, respectively. In addition, the pathlength of gas-phase diffusion was used to derive a parameter relating to the tortuosity of the tracheal system. These values, together with those obtained upon bioluminescent oxygen consumption, have been used to model oxygen supply to the photocyte. From these studies, it would also appear that the modulation of tracheolar fluid levels might be a significant mechanism of control of tissue oxygen levels in at least some insects
    corecore