40 research outputs found

    In vivo photosensitizer tomography inside the human prostate

    Get PDF
    Interstitial photodynamic therapy (IPDT) provides a promising means to treat large cancerous tumors and solid organs inside the human body. The treatment outcome is dependent on the distributions of light, photosensitizer, and tissue oxygenation. We present a scheme for reconstructing the spatial distribution of a fluorescent photosensitizer. The reconstruction is based on measurements performed in the human prostate, acquired during an ongoing IPDT clinical trial, as well as in optical phantoms. We show that in an experimental setup we can quantitatively reconstruct a fluorescent inclusion in a fluorescent background. We also show reconstructions from a patient showing a heterogeneous distribution of the photosensitizer mTHPC in the human prostate. (C) 2009 Optical Society of Americ

    Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties

    Get PDF
    Time-resolved and spatially resolved measurements of the diffuse reflectance from biological tissue are two well-established techniques for extracting the reduced scattering and absorption coefficients. We have performed a comparison study of the performance of a spatially resolved and a time-resolved instrument at wavelengths 660 and 785 nm and also of an integrating-sphere setup at 550-800 nm. The first system records the diffuse reflectance from a diode laser by means of a fiber bundle probe in contact with the sample. The time-resolved system utilizes picosecond laser pulses and a single-photon-counting detection scheme. We extracted the optical properties by calibration using known standards for the spatially resolved system, by fitting to the diffusion equation for the time-resolved system, and by using an inverse Monte Carlo model for the integrating sphere. The measurements were performed on a set of solid epoxy tissue phantoms. The results showed less than 10% difference in the evaluation of the reduced scattering coefficient among the systems for the phantoms in the range 9-20 cm(-1), and absolute differences of less than 0.05 cm(-1) for the absorption coefficient in the interval 0.05-0.30 cm(-1). (C) 2003 Optical Society of America

    Light Scattering By Multiple Red Blood Cells

    Get PDF
    The interaction of light with multiple red blood cells was systematically investigated by the finite-different time-domain method. The simulations show that the lateral multiple scattering between red blood cells is very weak. The polarization is shown to have an almost insignificant influence on the distribution of the scattered light. The numerical results were compared with three approximate methods: the superposition approximation, the Rytov approximation and the discrete dipole approximation. The agreement was very good

    Fluorescence spectra provide information on the depth of fluorescent lesions in tissue

    Get PDF
    The fluorescence spectrum measured from a fluorophore in tissue is affected by the absorption and scattering properties of the tissue, as well as by the measurement geometry. We analyze this effect with Monte Carlo simulations and by measurements on phantoms. The spectral changes can be used to estimate the depth of a fluorescent lesion embedded in the tissue by measurement of the fluorescence signal in different wavelength bands. By taking the ratio between the signals at two wavelengths, we show that it is possible to determine the depth of the lesion. Simulations were performed and validated by measurements on a phantom in the wavelength range 815-930 nm. The depth of a fluorescing layer could be determined with 0.6-mm accuracy down to at least a depth of 10 mm. Monte Carlo simulations were also performed for different tissue types of various composition. The results indicate that depth estimation of a lesion should be possible with 2-3-mm accuracy, with no assumptions made about the optical properties, for a wide range of tissues

    Interstitial photodynamic therapy for primary prostate cancer incorporating real-time treatment dosimetry

    Get PDF
    Photodynamic therapy (PDT) for the treatment of prostate cancer has been demonstrated to be a safe treatment option capable of inducing tissue necrosis and decrease in prostate specific antigen (PSA). Research groups report on large variations in treatment response, possibly due to biological variations in tissue composition and shortterm response to the therapeutic irradiation. Within our group, an instrument for interstitial PDT on prostate tissue that incorporates realtime treatment feedback is being developed. The treatment protocol consists of two parts. The first part incorporates the pre-treatment plan with ultrasound investigations, providing the geometry for the prostate gland and surrounding risk organs, an iterative random-search algorithm to determine near-optimal fiber positions within the reconstructed geometry and a Block-Cimmino optimization algorithm for predicting individual fiber irradiation times. During the second part, the therapeutic light delivery is combined with measurements of the light transmission signals between the optical fibers, thus monitoring the tissue effective attenuation coefficient by means of spatially resolved spectroscopy. These data are then used as input for repeated runs of the Block-Cimmino optimization algorithm. Thus, the irradiation times for individual fibers are updated throughout the treatment in order to compensate for the influence of changes in tissue composition on the light distribution at the therapeutic wavelength
    corecore