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Abstract

The interaction of light with multiple red blood cells was systematically in-
vestigated by the finite-different time-domain method. The simulations show
that the lateral multiple scattering between red blood cells is very weak. The
polarization is shown to have an almost insignificant influence on the dis-
tribution of the scattered light. The numerical results were compared with
three approximate methods: the superposition approximation, the Rytov ap-
proximation and the discrete dipole approximation. The agreement was very
good.

1 Introduction

Blood analysis are useful diagnostic tools for many blood related diseases. A good
understanding of the interaction of light with blood is a prerequisite for optical
blood analysis. In this paper the scattering from multiple blood cells are numerically
analyzed by a full wave method as well as by approximate methods.

It is known that the scattering and absorption of light in blood are largely gov-
erned by the red blood cells (RBCs). It is their refractive index, as well as their size,
shape and orientation, that determine how light propagates. A previous paper [1],
presents an investigation of the the interaction of light with one RBC. In particular
the dependence of the scattered intensity on the wavelengths and the orientation
of the RBC were analyzed. It was shown that approximate methods that utilize
that the RBC is a weakly scattering object give accurate results. In experiments,
the blood can be diluted so that the blood cells are sparsely distributed. In that
case approximate multiple scattering methods based on the Monte-Carlo method
are applicable [2]. The parameters used in these methods can be determined from
a single blood cell calculation. In full blood, the concentration of RBC may be as
high as 50%. Hence, the one RBC model may not be adequate.

In the case of high concentration of multiple RBCs the multiple scattering effects
have to be considered. As the number of RBC in a system increases, the approximate
methods that were successful for one RBC will eventually fail since they rely on
that multiple scattering effects are small. The aim of this paper is twofold. One
objective is to investigate the limitations of the finite difference time domain (FDTD)
method and of the approximate methods. The other objective is to analyze the
scattered intensities from one or multiple RBCs. That includes the analysis of cross
polarization, the dependence on the orientation of the RBCs, and the dependence of
the refractive index. The shapes of the RBCs are realistic (i.e. discocyte-like shape)
in all of the calculations.

In the next section, Section 2, the geometry, material parameters, incident field
and the scattered fields are defined. Section 3 contains descriptions of the FDTD
method, the Rytov approximation, and the discrete dipole approximation (DDA)
method. The numerical results are collected in Section 4 and in Section 5 some
concluding remarks are given.
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Figure 1: RBC cross section.

2 Preliminaries

The refractive index for the RBC is denoted n1 and the refractive index of the
surrounding blood plasma is denoted n2. The absorption is neglected in both regions.
The model of the disk-like normal RBC used in the simulations is defined in the
references [3, 4] with a volume of the RBC of 94µm3. The membrane of RBCs has
a negligible influence on the scattered field, cf. [5, 6] and hence the RBC model does
not include the membrane or any other internal structure. Figure 1 shows the cross
section of the disk-like RBC model, where the enclosing box has height a = 2.547 µm
and length b = 7.76 µm. The three-dimensional (3D) shape is obtained by rotating
the cross section around the z−axis. Figure 2 depicts the 3D picture of the disk-
like RBC model. In the simulations, the incident wave is a time-harmonic linearly
polarized plane wave. It propagates in the positive z-direction. The direction of the
electric field is along the vector ξ̂ which is a vector in the xy-plane. With the time
convention e−iωt, the complex incident electric field is given by

EEEinc(z) = ξ̂E0e
ikz, (2.1)

where k = n2ω/c0 is the wavenumber for the plasma and c0 is the velocity of light
in vacuum. In the numerical examples the RBCs are oriented so that their axis
of symmetry is either parallel to the z−axis or to the x−axis, cf. figure 3. To
interrelate the angular distributions of the scattered light of different incident angles,
the scattering probability is calculated as a function of the zenith scattering angle
θs (cf. figure 1) The scattering probability, P (θs), is defined as the integral of the
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Figure 2: 3D RBC.

differential scattering cross section, σdiff(θs, φ), over all azimuthal angles φ ∈ [0, 2π]:

P (θs) =

∫ 2π

0
σdiff(θs, φ) sin θsdφ

∫ 2π

0

∫ π

0
σdiff(θ, φ) sin θdθdφ

. (2.2)

The differential cross section is defined by

σdiff(θ, φ) = r2< SSS(r, θ, φ) · r̂ >

< SSSinc · ẑ >
, (2.3)

where

< SSSs(r, θ, φ) > =
1

2
Re{EEE(r, θ, φ) ×HHH∗(r, θ, φ)} (2.4)

< SSSinc > =
1

2
Re{EEEinc(z) ×HHH∗

inc(z)} =
1

2

n2

η0

|E0|2ẑ (2.5)

are the time averages of the Poynting vector of the scattered and incident fields,
respectively. Furthermore, r̂ is the radial unit vector, EEE(r, θ, φ) is the scattered
electric field, HHH∗(r, θ, φ) is the complex conjugate of the corresponding magnetic
field, and η0 = 120π Ω is the wave impedance of vacuum.

3 Methods

In this section the methods that are applied to the RBC problem are described
briefly. The methods are the FDTD method and the three approximate methods:
the superposition approximation, the Rytov approximation, and the DDA method.
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Figure 3: The different geometries used in the simulations.

3.1 FDTD: Yee’s Method

The FDTD approach is general and flexible and was recently applied to biological
scattering problems: [7–10]. It enables the simulation of scattering from inhomo-
geneous objects of arbitrary shape. Today it is one of the best full wave methods
for accurate simulations of the scattering of light from a small number of blood
cells. Readers interested in FDTD are recommended the book by Taflove [7], which
gives a good overview. The FDTD algorithm numerically solves the Maxwell’s curl
equations in time domain. In order to get the angular far-field distribution of the
scattered light, several techniques are required:

Absorbing boundary condition Because of the finite computational domain,
the values of the fields on the boundaries must be defined so that the solution re-
gion appears to extend infinitely in all directions. With no truncation conditions,
the scattered waves will be artificially reflected at the boundaries leading to inaccu-
rate results. The perfectly matched layer (PML) ABC suggested by Berenger [11]
has been implemented in the three-dimensional FDTD program and is used in the
examples in this paper.

Total field/scattered field Since this work considers the scattering patterns,
the total field/scattered field formulation is used. The computational grid is divided
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Figure 4: The regions used by FDTD.

into two regions. The total field region encloses the scatterers whereas the scattered
field region, where only the scattered field components are stored, encloses the total
field region, as illustrated in Figure 4. At the border between the two regions,
special connecting conditions are required, where the incident field is either added
or subtracted from the total field. The details of the connecting region can be found
in [7].

Far-Field Transformation The FDTD is inherently a near-field method. To
determine the far-field scattering pattern, the near-field data is transformed to the
far-field by the near-field to far-field (NFFF) transformation. The details of the
NFFF technique can be found in [7].

3.2 The Discrete Dipole Approximation

The Discrete Dipole Approximation (DDA) is closely related to the method of mo-
ments [12]. The principle of the method is as follows: The scattering volume is
divided into N parts. Each part is small enough to be represented by a dipole mo-
ment. Linearity of the medium implies that the induced dipole moment is equal to
the electric field in the volume multiplied by the polarizability of the volume. The
electric field is a superposition of the field from the sources external to the object
and the electric field from the sources inside the object, in this case the induced
dipoles. The field from the external sources is the incident plane wave and hence
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Figure 5: The scattering probabilities of the RBC in figure 3(a) for polarization
along the x̂− and the ŷ−directions.

the electric field in volume j is given by

EEE(rrrj) = EEEinc(rrrj) +
∑

k �=j

A(rrrj, rrrk) · ppp(rrrk) (3.1)

The term A(rrrj, rrrk) · ppp(rrrk), where A(rrrj, rrrk) is the Green dyadic, is the electric field
at a position rrrj from a dipole at position rrrk and can be found in basic textbooks
in electromagnetic theory. The equation is usually not solved by direct inversion.
Instead the conjugate gradient method is applied. A more detailed description of
the DDA method is given in [12, 13].

3.3 Superposition

The superposition approximation is based on the assumption that multiple scatter-
ing effects are small between the cells. Each RBC is viewed as a scattering object
and the multiple scattering effects between the RBCs are neglected. The advantage
is a reduction of the CPU-time and the required RAM of the computer. The far-field
pattern is calculated by the FDTD method for each RBC, and then the far-fields
are added. In our RBCs simulation models, the scattering objects are identical and
have the same orientation. The far-fields of the RBCs are the same, except for the
phase shift. Thus, it is enough to perform a simulation for one RBC and add a
phase shift to get the total far-field of the RBCs. Given the far-field EEE(θ, φ, r) of
one RBC with the origin located at the center of the RBC, the far field expression
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Figure 6: The absolute value of the far-field amplitude of the electric field for the
RBC in figure 3 (a). The solid curve shows the far-field in the xz−plane for the
incident field polarized in the x−direction and the dashed curve is the far-field in
the yz−plane for an incident field polarized in the y−direction.

for the configurations of N RBCs equation (3) reads:

EEE2RBC(θ, φ) = EEE(θ, φ)(
N∑

n=1

eikr̂·dddn) (3.2)

where r̂ = (sin θ cos φ, sin θ sin φ, cos θ), dddn is the translated vector of RBC number n
relative to the origin and where k is the wave number for the plasma. The method
gives accurate results as long as the blood cells are located in directions lateral to
the z−axis.

3.4 The Rytov approximation

The Rytov approximation is a frequently used method in tomography, [14, 15]. It
is then utilized for the inverse scattering problem of determining the permittivity
or conductivity of an object. In this paper it is applied in its simplest form to the
scattering of a plane wave from objects in a homogeneous lossless medium. The
reason the simplest form is used is somewhat based on the reference [16] where it is
claimed that the back-scattered amplitude is very small compared to the forward-
scattered amplitude. The method can be explained as follows: Consider an object
that occupies the volume V . Let the index of refraction be n1 for the object and
n2 for the surrounding medium. The incident wave is given by Eq. (2.1). The
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Figure 7: The absolute value of the far-field amplitude of the electric field for the
RBC in figure 3 (a). The solid curve shows the far-field in the yz−plane for the
incident field polarized in the x−direction and the dashed curve is the far-field in
the xz−plane for an incident field polarized in the y−direction.

approximation assumes that when the wave passes the object, the phase of the wave
is shifted while its amplitude and polarization are unaltered. The wave is assumed
to travel along straight rays parallel to the z-axis, i.e., along lines rrr = (x, y). Let
d(x, y) be the total distance the ray travels inside the scattering object. If z = z1 is
a plane behind the object, the total electric field in that plane reads

EEE(x, y, z1) = x̂E0e
ik0(n2z1+(n1−n2)d(x,y)) (3.3)

where k0 = ω/c0 is the wave number in vacuum. Thus the phase is shifted an angle
k0(n1 − n2)d(x, y) compared to the incident wave. The far-field amplitude is given
by the near-field to far-field transformation, cf. [7], i.e.,

FFF (θ, φ) = i
k2

4π
E0e

ikz1 r̂ ×
∫∫

S

(ŷ − r̂ × x̂)) (eik0(n1−n2)d(x,y) − 1)e−ikr̂·rrrdxdy (3.4)

where S is the plane z = z1. Notice that the integrand is zero outside the projection
of the blood cells on the plane z = z1. All reflections of the wave are neglected.
Consequently, the approximation gives a far-field amplitude that is only accurate
for angles θ < π/2. Despite these approximations the calculated far-field pattern is
quite accurate for the one RBC case []. The advantage of the Rytov approximation
is that it is simple and can easily be implemented on a computer.
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Figure 8: Scattering probability for the geometry in figure 3 (b) with 4 different
separation distances. Figures (a)-(d) are the results with separation distances equal
to 0a, 1a, 2a and 3a, respectively, where a is the thickness of the RBC cross section,
cf. figure 1.

4 Results and discussions

In this section the scattering properties of the RBCs are investigated by the FDTD
method, the superposition approximation, the Rytov approximation and the DDA
method. The simulation program SEMCAD [17] was used for the FDTD simula-
tions of the far-field scattering pattern. In all the FDTD simulation cases, the grid
space was adaptively set between λ/10 and λ/20, in order to yield accurate results.
The simulations in this paper indicate that the Rytov approximation is somewhat
faster than the DDA method. Both of them are considerably much faster than the
FDTD method. The Rytov approximation method is the most memory efficient
method of the three. In the numerical examples, the index of refraction of the RBC
and the plasma is n1 = 1.406 and n2 = 1.345, respectively, except in section 4.4
where the influence of the index of refractive is investigated.

4.1 The influence of the polarization

First, the cross-polarization effect is analyzed. It is anticipated that cross polar-
ization can appear in flowing blood since the RBCs tend to align in a direction
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Figure 9: The same case as in figure 8 but for model (c).

perpendicular to the flow direction. The question is if the effect is strong enough
to be measurable. The far fields were calculated using the model presented in fig-
ure 3(a), for two orthogonal polarizations, one with ξ̂ = x̂, i.e., with the electric
field in the x̂-direction, and the the other with ξ̂ = ŷ, cf Eq. (2.1). The scatter-
ing probability patterns are shown in figure 5. Since the scattering probability, cf.
Eq. (2.2), is an averaged value over the azimuthal angle φ, the polarization effect al-
most disappears. This conclusion is in agreement with T-matrix results [18]. Figure
6 shows the absolute value of the electric far-field amplitude in the xz−plane nd the
yz−plane in the cases of polarization in the x̂− and the ŷ−direction, respectively.
The corresponding graphs for cross polarization are shown in figure 7. As seen from
the graphs the far-field is polarization dependence is very weak, in particular in the
forward direction. There will be a small cross-polarization if all RBCs are aligned
as in figure 3(a). Very accurate measurements are required in order to detect the
cross polarization.

4.2 The scattering probability for model (b)-(d)

To investigate the dependence of the distance between two RBCs, systematic simu-
lations were conducted by accurate FDTD calculations, as well as by superposition
and by the Rytov approximation. Three cases were simulated. For each case, the
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Figure 10: The same case as in figure 8 but for model (d).

scattering probabilities were calculated for different distances between two RBCs
(i.e., 0a, 1a, 2a and 3a, where a is the thickness of the RBC, cf. Figure 1).

4.2.1 Model (b) case

Figure 8 shows the influence the distance between cells has on the scattering prob-
ability. The scattering pattern becomes more complex when the RBCs distance
increases. The superposition method is accurate, even when the two RBCs touch.
These results emphasize that the lateral multiple-scattering is very weak between
RBCs.

4.2.2 Model (c) case

The same simulations as in the previous case were conducted for the geometry in
figure 3(c). The results are presented in figure 9. The scattering patterns are almost
independent of the lateral distance. The superposition method is accurate due to
the weak lateral multiple-scattering between RBCs. Also the Rytov approximation
provides very similar results (not shown).
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Figure 11: The scattering probability obtained by the FDTD and the Rytov ap-
proximation of for the geometry in figure 3(d) with the distances 0a and 4a between
the RBCs, respectively.

4.2.3 Model (d) case

The scattering patterns for the geometry in figure 3(d) are similar to that of model
(c), see figure 10. The superposition method does not work as well as in models (b)
and (c). This means that the multiple-scattering along the incident wave direction
is more pronounced than in the lateral case and cannot be neglected. The Rytov
approximation results of model (d) also support this conclusion, see figure 11. Since
the simplest form of the Rytov approximation is used, there is no difference between
the simulation result using different distances in model (d), cf Eq. (3.3). The DDA
method was also applied to the model (d). Figure 12 shows the result when the
RBCs distance equals 0a for model (d). It is seen that the DDA method can deal
with the multiple-scattering.

4.3 The scattering probability for multiple RBCs

As mentioned in section 3.3, the superposition method provides accurate results as
long as the blood cells are located in directions lateral to the incident wave. Figure
13 shows the scattering patterns of multiple RBCs. The simulation geometry is the
same as in figure 3(b) except that the number of RBCs is changed. Our simulation
results show that one may calculate the scattering probability for many parallel
RBCs by dividing the large simulation domain into small and computable sub-
domains along directions perpendicular to the incident wave direction and using the
superposition method.
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Figure 12: The scattering probability obtained from the FDTD and the DDA
simulations for the geometry on figure 3(d) with the distance 0a between the RBCs.

4.4 The dependence of refractive index

In order to investigate the dependence of the refractive index, the refractive index
of the plasma, n2, was altered, while the refractive index of the RBC was fixed
at n1 = 1.406. Three different index of refraction were used in this case (i.e.,
n2 = n1/1.020, n1/1.010, n1/1.007). It is interesting that the normalized scattering
patterns of these three cases are almost the same. Since the relative refractive
index is very low, the scattering can be described by the Born approximation [19].
According to the Born approximation, the scattered field of the RBC reads,

EEEs = −k2eikr

4πr
k̂s × (k̂s × êi)(n

2
ref − 1)

∫∫∫

RBC

dV ei(kkki−kkks)·rrr′ , (4.1)

where nref = n1/n2. The ratio of the scattered far fields with different back-
ground reads,

EEE ′

EEE
∼

(
k′

k

)2 n′
ref

2 − 1

n2
ref − 1

[1 + O(δk)] (4.2)

where k and k′ are the wave number in the background and δk = k′ − k. Thus
the ratio of the radiated powers reads,

P ′

P
∼

[
n′−2

ref − 1

n−2
ref − 1

]2

(4.3)
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Figure 13: The same case as in figure 8 but with more than two number of RBCs
are given in the label of the corresponding figures.

Table 1: The radiation powers of RBC with different background refractive index.
nref 1.045 1.020 1.010

P (FDTD) 1.39 × 10−13 3.33 × 10−14 8.72 × 10−15

P (equation 4.3) 1.60 × 10−13 3.40 × 10−14 8.76 × 10−15

In table 1, the radiated powers with different background refractive index are
listed. The results using equation 4.3 with n′

ref = 1.007, P ′ = 4.33 × 10−15 are
also given in the table. The FDTD simulation results and that of Born approxima-
tion have the same order of magnitude. The accuracy of the Born approximation
improves as the relative refractive index approaches one.

5 Conclusions

The scattering from several RBCs are analyzed. From the simulation results, it is
seen that there is a weak polarization dependence in the far-field pattern from one
RBC. This is agreement with the published results by T-matrix calculations [18].
It implies that there are cross-polarization effects when polarized light propagates
through a sample of blood if the blood cells are aligned. The effect is weak, in
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particular in the forward direction and it might not be possible to detect the cross
polarization in an experiment. The scattering probability patterns are not sensitive
to the polarization due to the integration in the azimuthal angle. The general and
flexible numerical approach FDTD was employed to study the multiple-scattering
properties between RBCs. The calculations show that the lateral multiple-scattering
between RBCs is very weak. As a result of this, approximate methods are accurate.
Meanwhile, the multiple-scattering between RBCs located along the incident wave
direction cannot be neglected. Hence, superposition and the simplest form of Rytov
approximation do not give accurate results in that case. However, the results of the
DDA method, which is a more accurate method, agrees with the FDTD results.

For the applications in this paper, the DDA method is faster than FDTD and
requires less memory. Hence, it is a very strong alternative to FDTD. The Rytov
approximation is less accurate than DDA and FDTD methods. However, it is a very
simple method that can easily be implemented on a computer. It also give accurate
results for the geometry in figure 3(c).
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