487 research outputs found

    Quantification of Entry Phenotypes of Macrophage-Tropic HIV-1 across a Wide Range of CD4 Densities

    Get PDF
    Defining a macrophage-tropic phenotype for HIV-1 to assess a role in pathogenesis is complicated by the fact that HIV-1 isolates vary continuously in their ability to enter monocyte-derived macrophages (MDMs) in vitro, and MDMs vary in their ability to support HIV-1 entry. To overcome these limitations, we identified consistent differences in entry phenotypes between five paired blood-derived, T cell-tropic HIV-1 env genes, four of which are CCR5-using (R5) and one of which is CXCR4-using (X4), and cerebrospinal fluid (CSF)-derived, R5 macrophage-tropic env genes. We performed entry assays using the CD4- and CCR5-inducible Affinofile cell line, expressing a range of CD4 levels that approximates the range from MDMs to CD4+ T cells. The macrophage-tropic viruses were significantly better at infecting cells expressing low levels of CD4 than the T cell-tropic viruses from the same subjects, with the titration of CD4 providing a distinctive and quantitative phenotype. This difference in CD4 utilization was not due to macrophage-tropic viruses being CD4 independent. Furthermore, macrophage-tropic viruses did not differ from paired T cell-tropic viruses in their ability to use low levels of CCR5 (tpaired = −1.39; P = 0.24) or their use of an alternative conformation of CCR5. We also infected MDMs with a panel of viruses and observed that infectivity of each virus differed across four donors and between three preparations from a single donor. We concluded that the evolutionary transition from replication in T cells to that in macrophages involves a phenotypic transition to acquire the ability to infect cells expressing low levels of CD4 and that this phenotype is more reliably measured in Affinofile cells than in macrophages

    Permissivity of Dipeptidyl Peptidase 4 Orthologs to Middle East Respiratory Syndrome Coronavirus Is Governed by Glycosylation and Other Complex Determinants

    Get PDF
    ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes dipeptidyl peptidase 4 (DPP4) as an entry receptor. While bat, camel, and human DPP4 support MERS-CoV infection, several DPP4 orthologs, including mouse, ferret, hamster, and guinea pig DPP4, do not. Previous work revealed that glycosylation of mouse DPP4 plays a role in blocking MERS-CoV infection. Here, we tested whether glycosylation also acts as a determinant of permissivity for ferret, hamster, and guinea pig DPP4. We found that, while glycosylation plays an important role in these orthologs, additional sequence and structural determinants impact their ability to act as functional receptors for MERS-CoV. These results provide insight into DPP4 species-specific differences impacting MERS-CoV host range and better inform our understanding of virus-receptor interactions associated with disease emergence and host susceptibility. IMPORTANCE MERS-CoV is a recently emerged zoonotic virus that is still circulating in the human population with an ∌35% mortality rate. With no available vaccines or therapeutics, the study of MERS-CoV pathogenesis is crucial for its control and prevention. However, in vivo studies are limited because MERS-CoV cannot infect wild-type mice due to incompatibilities between the virus spike and the mouse host cell receptor, mouse DPP4 (mDPP4). Specifically, mDPP4 has a nonconserved glycosylation site that acts as a barrier to MERS-CoV infection. Thus, one mouse model strategy has been to modify the mouse genome to remove this glycosylation site. Here, we investigated whether glycosylation acts as a barrier to infection for other nonpermissive small-animal species, namely, ferret, guinea pig, and hamster. Understanding the virus-receptor interactions for these DPP4 orthologs will help in the development of additional animal models while also revealing species-specific differences impacting MERS-CoV host range

    Evolution of Human Immunodeficiency Virus Type 1 Protease Genotypes and Phenotypes In Vivo under Selective Pressure of the Protease Inhibitor Ritonavir

    Get PDF
    We examined the population dynamics of human immunodeficiency virus type 1 pro variants during the evolution of resistance to the protease inhibitor ritonavir (RTV) in vivo. pro variants were followed in subjects who had added RTV to their previously failed reverse transcriptase inhibitor therapy using a heteroduplex tracking assay designed to detect common resistance-associated mutations. In most cases the initial variant appeared rapidly within 2 to 3 months followed by one or more subsequent population turnovers. Some of the subsequent transitions between variants were rapid, and some were prolonged with the coexistence of multiple variants. In several cases variants without resistance mutations persisted despite the emergence of new variants with an increasing number of resistance-associated mutations. Based on the rate of turnover of pro variants in the RTV-treated subjects we estimated that the mean fitness of newly emerging variants was increased 1.2-fold (range, 1.02 to 1.8) relative to their predecessors. A subset of pro genes was introduced into infectious molecular clones. The corresponding viruses displayed impaired replication capacity and reduced susceptibility to RTV. A subset of these clones also showed increased susceptibility to two nonnucleoside reverse transcriptase inhibitors and the protease inhibitor saquinavir. Finally, a significant correlation between the reduced replication capacity and reduced processing at the gag NC-p1 processing site was noted. Our results reveal a complexity of patterns in the evolution of resistance to a protease inhibitor. In addition, these results suggest that selection for resistance to one protease inhibitor can have pleiotropic effects that can affect fitness and susceptibility to other drugs

    HIV-1 target cells in the CNS

    Get PDF
    HIV-1 replication in the central nervous system (CNS) is typically limited by the availability of target cells. HIV-1 variants that are transmitted and dominate the early stages of infection almost exclusively use the CCR5 coreceptor and are well adapted to entering, and thus infecting, cells expressing high CD4 densities similar to those found on CD4+ T cells. While the “immune privileged” CNS is largely devoid of CD4+ T cells, macrophage and microglia are abundant throughout the CNS. These cells likely express CD4 densities that are too low to facilitate efficient entry or allow sustained replication by most HIV-1 isolates. Examination of CNS viral populations reveals that late in disease the CNS of some individuals contains HIV-1 lineages that have evolved the ability to enter cells expressing low levels of CD4 and are well-adapted to entering macrophages. These macrophage-tropic (M-tropic) viruses are able to maintain sustained replication in the CNS for many generations, and their presence is associated with severe neurocognitive impairment. Whether conditions such as pleocytosis are necessary for macrophage-tropic viruses to emerge in the CNS is unknown, and extensive examinations of macrophage-tropic variants have not revealed a genetic signature of this phenotype. It is clear, however, that macrophage tropism is rare among HIV-1 isolates and is not transmitted, but is important due to its pathogenic effects on hosts. Prior to the evolution of macrophage-tropic variants, the viruses that are predominately infecting T cells (R5 T cell-tropic) may infect macrophages at a low level and inefficiently, but this could contribute to the reservoir

    Evolutionary pathways to NS5A inhibitor resistance in genotype 1 hepatitis C virus

    Get PDF
    Direct-acting antivirals (DAAs) targeting NS5A are broadly effective against hepatitis C virus (HCV) infections, but sustained virological response rates are generally lower in patients infected with genotype (gt)-1a than gt-1b viruses. The explanation for this remains uncertain. Here, we adopted a highly accurate, ultra-deep primer ID sequencing approach to intensively study serial changes in the NS5A-coding region of HCV in gt-1a- and gt-1b-infected subjects receiving a short course of monotherapy with the NS5A inhibitor, elbasvir. Low or undetectable levels of viremia precluded on-treatment analysis in gt-1b-infected subjects, but variants with the resistance-associated substitution (RAS) Y93H in NS5A dominated rebounding virus populations following cessation of treatment. These variants persisted until the end of the study, two months later. In contrast, while Y93H emerged in multiple lineages and became dominant in subjects with gt-1a virus, these haplotypes rapidly decreased in frequency off therapy. Substitutions at Q30 and L31 emerged in distinctly independent lineages at later time points, ultimately coming to dominate the virus population off therapy. Consistent with this, cell culture studies with gt-1a and gt-1b reporter viruses and replicons demonstrated that Y93H confers a much greater loss of replicative fitness in gt-1a than gt-1b virus, and that L31M/V both compensates for the loss of fitness associated with Q30R (but not Y93H) and also boosts drug resistance. These observations show how differences in the impact of RASs on drug resistance and replicative fitness influence the evolution of gt-1a and gt-1b viruses during monotherapy with an antiviral targeting NS5A. © 2018 Elsevier B.V

    ÎČ-D-N4-hydroxycytidine (NHC) Inhibits SARS-CoV-2 Through Lethal Mutagenesis But Is Also Mutagenic To Mammalian Cells

    Get PDF
    Mutagenic ribonucleosides can act as broad-based antiviral agents. They are metabolized to the active ribonucleoside triphosphate form and concentrate in the genomes of RNA viruses during viral replication. ÎČ-D-N 4-hydroxycytidine (NHC, the initial metabolite of molnupiravir) is more than 100-fold more active than ribavirin or favipiravir against SARS-CoV-2, with antiviral activity correlated to the level of mutagenesis in virion RNA. However, NHC also displays host mutational activity in an animal cell culture assay, consistent with RNA and DNA precursors sharing a common intermediate of a ribonucleoside diphosphate. These results indicate that highly active mutagenic ribonucleosides may hold risk for the host

    Compensatory Evolution in RNA Secondary Structures Increases Substitution Rate Variation among Sites

    Get PDF
    There is growing evidence that interactions between biological molecules (e.g., RNA–RNA, protein–protein, RNA–protein) place limits on the rate and trajectory of molecular evolution. Here, by extending Kimura's model of compensatory evolution at interacting sites, we show that the ratio of transition to transversion substitutions (Îș) at interacting sites should be equal to the square of the ratio at independent sites. Because transition mutations generally occur at a higher rate than transversions, the model predicts that Îș should be higher at interacting sites than at independent sites. We tested this prediction in 10 RNA secondary structures by comparing phylogenetically derived estimates of Îș in paired sites within stems (Îșp) and unpaired sites within loops (Îșu). Eight of the 10 structures showed an excellent match to the quantitative predictions of the model, and 9 of the 10 structures matched the qualitative prediction Îșp > Îșu. Only the Rev response element from the human immunovirus (HIV) genome showed the reverse pattern, with Îșp < Îșu. Although a variety of evolutionary forces could produce quantitative deviations from the model predictions, the reversal in magnitude of Îșp and Îșu could be achieved only by violating the model assumption that the underlying transition (or transversion) mutation rates were identical in paired and unpaired regions of the molecule. We explore the ability of the APOBEC3 enzymes, host defense mechanisms against retroviruses, which induce transition mutations preferentially in single-stranded regions of the HIV genome, to explain this exception to the rule. Taken as a whole, our findings suggest that Îș may have utility as a simple diagnostic to evaluate proposed secondary structures

    Within-host evolution results in antigenically distinct GII.4 noroviruses

    Get PDF
    Genogroup II, genotype 4 (GII.4) noroviruses are known to rapidly evolve, with the emergence of a new primary strain every 2 to 4 years as herd immunity to the previously circulating strain is overcome. Because viral genetic diversity is higher in chronic than in acute infection, chronically infected immunocompromised people have been hypothesized to be a potential source for new epidemic GII.4 strains. However, while some capsid protein residues are under positive selection and undergo patterned changes in sequence variation over time, the relationships between genetic variation and antigenic variation remains unknown. Based on previously published GII.4 strains from a chronically infected individual, we synthetically reconstructed virus- like particles (VLPs) representing early and late isolates from a small-bowel transplant patient chronically infected with norovirus, as well as the parental GII.4-2006b strain. We demonstrate that intrahost GII.4 evolution results in the emergence of antigenically distinct strains over time, comparable to the variation noted between the chronologically predominant GII.4 strains GII.4-2006b and GII.4-2009. Our data suggest that in some individuals the evolution that occurs during a chronic norovirus infection overlaps with changing antigenic epitopes that are associated with successive outbreak strains and may select for isolates that are potentially able to escape herd immunity from earlier isolates

    A Reverse Genetics Platform That Spans the Zika Virus Family Tree

    Get PDF
    ABSTRACT Zika virus (ZIKV), a mosquito-borne flavivirus discovered in 1947, has only recently caused large outbreaks and emerged as a significant human pathogen. In 2015, ZIKV was detected in Brazil, and the resulting epidemic has spread throughout the Western Hemisphere. Severe complications from ZIKV infection include neurological disorders such as Guillain-Barré syndrome in adults and a variety of fetal abnormalities, including microcephaly, blindness, placental insufficiency, and fetal demise. There is an urgent need for tools and reagents to study the pathogenesis of epidemic ZIKV and for testing vaccines and antivirals. Using a reverse genetics platform, we generated six ZIKV infectious clones and derivative viruses representing diverse temporal and geographic origins. These include three versions of MR766, the prototype 1947 strain (with and without a glycosylation site in the envelope protein), and H/PF/2013, a 2013 human isolate from French Polynesia representative of the virus introduced to Brazil. In the course of synthesizing a clone of a circulating Brazilian strain, phylogenetic studies identified two distinct ZIKV clades in Brazil. We reconstructed viable clones of strains SPH2015 and BeH819015, representing ancestral members of each clade. We assessed recombinant virus replication, binding to monoclonal antibodies, and virulence in mice. This panel of molecular clones and recombinant virus isolates will enable targeted studies of viral determinants of pathogenesis, adaptation, and evolution, as well as the rational attenuation of contemporary outbreak strains to facilitate the design of vaccines and therapeutics. IMPORTANCE Viral emergence is a poorly understood process as evidenced by the sudden emergence of Zika virus in Latin America and the Caribbean. Malleable reagents that both predate and span an expanding epidemic are key to understanding the virologic determinants that regulate pathogenesis and transmission. We have generated representative cDNA molecular clones and recombinant viruses that span the known ZIKV family tree, including early Brazilian isolates. Recombinant viruses replicated efficiently in cell culture and were pathogenic in immunodeficient mice, providing a genetic platform for rational vaccine and therapeutic design

    Within-Host Evolution Results in Antigenically Distinct GII.4 Noroviruses

    Get PDF
    Genogroup II, genotype 4 (GII.4) noroviruses are known to rapidly evolve, with the emergence of a new primary strain every 2 to 4 years as herd immunity to the previously circulating strain is overcome. Because viral genetic diversity is higher in chronic than in acute infection, chronically infected immunocompromised people have been hypothesized to be a potential source for new epidemic GII.4 strains. However, while some capsid protein residues are under positive selection and undergo patterned changes in sequence variation over time, the relationships between genetic variation and antigenic variation remains unknown. Based on previously published GII.4 strains from a chronically infected individual, we synthetically reconstructed virus-like particles (VLPs) representing early and late isolates from a small-bowel transplant patient chronically infected with norovirus, as well as the parental GII.4-2006b strain. We demonstrate that intrahost GII.4 evolution results in the emergence of antigenically distinct strains over time, comparable to the variation noted between the chronologically predominant GII.4 strains GII.4-2006b and GII.4-2009. Our data suggest that in some individuals the evolution that occurs during a chronic norovirus infection overlaps with changing antigenic epitopes that are associated with successive outbreak strains and may select for isolates that are potentially able to escape herd immunity from earlier isolates
    • 

    corecore