

View metadata, citation and similar papers at core.ac.uk

JVI Accepts published online ahead of print

1	Within Host Evolution Results in Antigenically Distinct GII.4 Noroviruses
2	Kari Debbink ^a , Lisa C. Lindesmith ^b , Martin T. Ferris ^c , Jesica Swanstom ^b , Martina
3	Beltramello ^d , Davide Corti ^{d,e} , Antonio Lanzavecchia ^{d,f} , and Ralph S. Baric ^{a,b} #
4	
5	Department of Microbiology and Immunology, University of North Carolina,
6	Chapel Hill, NC, USA ^a ; Department of Epidemiology, University of North
7	Carolina, Chapel Hill, NC, USA ^b ; Department of Genetics, University of North
8	Carolina, Chapel Hill, NC, USA ^c ; Institute for Research in Biomedicine,
9	Bellinzona, Switzerland ^d ; Humabs Biomed SA, Bellinzona, Switzerland ^e ; Institute
10	of Microbiology, ETH Zurich, Zurich, Switzerland ^f
11	
12	Running Head: Norovirus Within Host Evolution
13	#Address correspondence to Ralph Baric, rbaric@sph.unc.edu
14	
15	
16	Abstract word count: 193
17	Text word count: 5,663
18	

19 Abstract

20 GII.4 noroviruses are known to rapidly evolve, with the emergence of a new 21 primary strain every 2-4 years as herd immunity to the previously-circulating 22 strain is overcome. Because viral genetic diversity is higher in chronic as 23 compared to acute infection, chronically-infected immunocompromised people 24 have been hypothesized as a potential source for new epidemic GII.4 strains. 25 However, while some capsid protein residues are under positive selection and 26 undergo patterned changes in sequence variation over time, the relationships 27 between genetic variation and antigenic variation remains unknown. Based on 28 previously-published GII.4 strains from a chronically-infected individual, we 29 synthetically reconstructed VLPs representing an early and late isolates from a 30 small bowel transplant patient chronically infected with norovirus, as well as the 31 parental GII.4-2006b strain. We demonstrate that intra-host GII.4 evolution 32 results in the emergence of antigenically distinct strains over time, comparable to 33 the variation noted between chronologically predominant GII.4 strains GII.4-34 2006b and GII.4-2009. Our data suggest that in some individuals the evolution that occurs during a chronic norovirus infection overlaps with changing antigenic 35 36 epitopes that are associated with successive outbreak strains and may select for 37 isolates that are potentially able to escape herd immunity from earlier isolates.

38 Importance

39 Noroviruses are agents of gastrointestinal illness, infecting an estimated 21

40 million people per year in the United States alone. In healthy individuals,

41 symptomatic infection typically resolves within 24-48 hours. However, symptoms

42	may persist years in immunocompromised individuals, and development of
43	successful treatments for these patients is a continued challenge. This work is
44	relevant to the design of successful norovirus therapeutics for chronically infected
45	patients, provides support for previous assertions that chronically infected
46	individuals may serve as reservoirs for new, antigenically unique emergent
47	strains, and furthers our understanding of GII.4 norovirus immune-driven
48	molecular evolution.

49

50 Introduction

51 Noroviruses are the leading cause of gastrointestinal illness worldwide. 52 While typically an acute disease, norovirus infections can be serious in the 53 young, old, and immunocompromised, as these groups are at risk for more 54 severe disease and death (1-3). Norovirus is spread rapidly in environments 55 where people are found in close proximity including schools and daycares, 56 nursing homes, cruise ships, and hospitals. Importantly, hospital outbreaks can 57 result in significant economic damage, with direct and indirect costs from a single 58 outbreak reaching \$650,000 (4).

59 Noroviruses are members of the Caliciviridae family and contain a ~7.5 kb 60 single stranded, positive polarity RNA genome. They are divided into 5 61 genogroups; genogroups I and II are responsible for the majority of human 62 disease and are further subdivided into at least 9 and 22 genotypes, respectively 63 (5). The human norovirus genome encodes three open reading frames: the non-64 structural proteins, the ORF2 major capsid protein (VP1), and the ORF3 minor 65 capsid protein (VP2) (6). VP1 is further divided into the shell (S) and protruding 66 (P) domains, with the P domain is comprised of the P1 and P2 subdomains (6). 67 Phylogenetic studies indicate that the P2 subdomain is the most variable region 68 of the norovirus genome (7, 8). The P2 subdomain is also the most surface 69 exposed region of the norovirus capsid, interacting with antibodies and 70 histoblood group antigens, which serve as binding ligands and putative receptors 71 for human norovirus docking and entry.

72 GII.4 strains cause over 70% of all norovirus outbreaks (9) and epidemic 73 outbreaks occur every 2-4 years involving a new antigenically distinct strain (7, 74 10). Studies of antigenic variation in GII.4 norovirus have shown that the P2 75 region is involved in strain specific antibody recognition (7, 11, 12), and contains 76 at least three blockade (potential neutralization) epitopes (13-15). In epidemic 77 strains, genetic variation in P2 is linked to antigenic changes over time, indicating 78 that molecular evolution in the P2 subdomain is likely driven by escape from 79 human herd immunity (12-17). 80 Noroviruses typically cause acute infection in healthy individuals, resulting in symptomatic infection for 24-48 hours followed by viral shedding for two to four 81 82 weeks (18, 19). However, some immunocompromised individuals such as 83 transplant patients on immunosuppressive drugs, those with primary 84 immunodeficiencies, cancer patients undergoing chemotherapy, and those with 85 HIV may develop chronic norovirus infection. Symptomatic infection and viral 86 shedding in these patients can persist from weeks to years (20-25) and can 87 result in medical issues such as dehydration and nutrient deficiencies (26), 88 making development of treatment options for these patients an important priority. 89 Unfortunately, there are no approved therapeutics or vaccines for controlling 90 norovirus infections. Attempted methods to control chronic infection have 91 included treatment with drugs effective against other diarrheal diseases (27), 92 adjustment of immunosuppressive drug type or dosage (28), and oral or enteral 93 administration of human IgG (29-32). Although reduction in immunosuppression

94 coupled with IgG administration has shown promise for some transplant patients,

IgG therapy has failed in other studies, and reduction of immunosuppression isnot always possible.

97 Existing studies provide a basis to investigate important questions about 98 chronic norovirus infection. Although unconfirmed, one recent hypothesis is that 99 chronically infected norovirus patients may be important sources of infection both 100 in healthcare settings (33) and as potential reservoirs for new emergent GII.4 101 norovirus strains (20, 23, 25). Although the fitness and the infectivity of 102 chronically shed virus is currently unknown, potential accounts of chronic 103 norovirus shedders involved in hospital outbreaks and transmission of virus to 104 both immunocompromised and immunocompetent individuals have been 105 documented (21, 33, 34).

106 Virus capsid sequence and phylogenetic data from chronically infected 107 patients have found substantial genetic variation over the course of infection in 108 many, but not all, patients (22, 23, 35). Siebenga et al. found that capsid 109 mutation rate was linked to immune impairment, suggesting that immune-driven 110 selection drives evolution in the capsid during chronic infection (35), and explains 111 differences in evolution depending on level of immunosuppression. Additional 112 studies have corroborated a role for intra-host immune driven selection by 113 demonstrating that virus isolated from chronically-infected patients undergoes 114 positive selection and exhibits higher genetic diversity in the capsid protein than 115 virus from acutely infected individuals (23, 25). In some chronically infected 116 patients with GII.4 strain infections, many of the changes occur in blockade

- 117 epitopes, areas of known or predicted antigenic importance but antigenic
 - 118 comparisons have not been performed (13-15, 22, 35).
 - 119 In this manuscript, we compare and contrast the antigenic differences
 - 120 using a panel of polyclonal and monoclonal antibodies and time-ordered VLPs
 - 121 derived from early (day 1—P.D1) and late (day 302—P.D302) capsid protein
 - 122 amino acid sequences from a chronically infected immunocompromised patient
 - 123 (23). Our data demonstrate significant antigenic differences between intra-host
- 124 variants that mirrors the degree of variation seen in major successive norovirus
- 125 strains, suggesting that chronic norovirus infections can evolve antigenically
- 126 unique variants with the potential to seed future norovirus outbreaks.
- 127

128 Methods

129 Sequences and Structural Homology Models

- 130 GenBank (NCBI sequence database) sequences used in this study were
- 131 JQ478409.1 (GII.4-2006b) (15), JQ417309 (P 04.2009 or P.D1) (23), JQ417327
- 132 (P_02.2010 or P.D302) (23), JN595867.1 (GII.4-2009) (15), and JX459908.1
- 133 (GII.4-2012) (36), and the VA387 crystal structure is available from the RCSB
- 134 Protein Data Bank: identifier 2OBT (37). We refer to originally-named P_04.2009
- as P.D1 and P_02.2010 as P.D302 for simplicity throughout the manuscript.
- 136 Homology models of these sequences were constructed using Modeller (Max-
- 137 Planck Institutue for Developmental Biology) and modeled in PyMOL.
- 138
- 139 Production of VRPs. Virus replicon particles (VRPs) encoding the norovirus
- 140 major capsid gene were produced as previously described (38). Briefly,
- 141 expression vector pVR21 encodes the VEE genome with the VEE structural
- 142 genes replaced with a commercially synthesized norovirus ORF2 gene
- 143 (BioBasic) behind the 26S promoter. The VEE-norovirus ORF2 construct and two
- 144 separate plasmids expressing either the VEE 3526 E1 and E2 glycoproteins or
- 145 VEE 3526 capsid protein were used to make RNA. RNA from all three constructs
- 146 was electroporated into BHK cells, and 48 hours later VRPs were harvested and
- 147 purified by high speed centrifugation. VRP titers were determined by counting
- 148 fluorescent cells detected with FITC-labeled antibody. VLP production from VRPs
- and structural integrity was confirmed by EM.
- 150

151	Production of VLPs. VLPs were produced as previously described (13, 15).
152	Briefly, commercially synthesized norovirus ORF2 (BioBasic) from chronically
153	infected patient sequence or outbreak strain sequence was cloned into
154	expression vector pVR21 behind the 26S promotor, and genome length RNAs
155	were synthesized in vitro using T7 RNA polymerase. RNA from the VEE-ORF2
156	construct and helper RNAs was electroporated into BHK cells, and 24 hours later
157	VLPs were harvested and purified by high speed centrifugation. VLP
158	concentration was determined by BCA Protein Assay (Pierce), and structural
159	integrity was confirmed for all VLPs by EM.
160	
161	HBGA Binding Assay. HBGA assays were performed as previously described
162	(7). Briefly, Avidin coated plates (Pierce) were coated with 10 ug/mL synthetic
163	biotinylated HBGAs (GlycoTech), followed by addition of 2 ug/mL VLPs. HBGA
164	binding was detected by strain specific mouse polyclonal sera followed by anti-
165	mouse IgG-HRP (GE Healthcare) and then One-Step Ultra TMB HRP substrate.
166	Positive reactivity for each HBGA is defined as an OD 450 nm signal above or
167	equal to 3X the background binding (background range 0.049-0.066) after
168	background subtraction.
169	
170	EIAs. Reactivity with mouse and human mAbs was determined by enzyme-linked

171 immunoassay (EIA). Plates were coated with 0.5 μ g/ml VLP in PBS, and then

172 $\,$ two-fold serial dilutions of mAb starting at 1 $\mu g/ml$ mAb were added. Anti-mouse

173 or human IgG-HRP (GE Healthcare) followed by One-Step Ultra TMB EIA HRP

174 substrate solution was used for detection. Positive reactivity is defined as a mean 175 OD 450 nm ≥0.2 after background subtraction. Data represent the combination of 176 three independent trials with each VLP run in duplicate in each trial. Sigmoidal 177 dose response analysis was performed as previously described (14) using the 178 reactivity at 1 ug/ml as 100% binding. EC₅₀ values among VLPs were compared 179 using One-way ANOVA with Dunnett's post test. P<0.05 was considered 180 significant. VLPs with maximum reactivity below mean OD 450 nm 0.2 were 181 assigned a value of zero for graphical representations.

182

183 VLP-Carbohydrate Ligand-Binding Antibody Blockade Assays.

184 Blockade assays using Pig Gastric Mucin Type III (Sigma Chemicals) were 185 performed as previously described (14). PGM-bound VLPs were detected by 186 rabbit anti-GII.4 norovirus polyclonal sera. The percent control binding was 187 defined as the VLP-ligand binding level in the presence of test antibody or sera 188 compared to the binding level in the absence of antibody multiplied by 100. All 189 mAbs and sera were tested for blockade potential at two-fold serial dilutions 190 ranging from 0.0039 to 2 µg/ml (mouse mAbs), 0.0039 to 16 µg/ml (human 191 mAbs), and 0.0098 to 5% (mouse sera). Data from blockade experiments using 192 monoclonal antibodies represent the combination of three independent trials with 193 each VLP run in duplicate in each trial. Data from blockade experiments using 194 polyclonal mouse sera represent the combination of two independent trials in 195 which sera from five individual mice were tested for each VLP. Sigmoidal dose 196 response analysis was performed as previously described, and EC₅₀ values

among VLPs were compared using One-way ANOVA with Bonferroni post test.
P<0.05 was considered significant. Blockade assays utilize VLP concentrations
in the low nanomolar range; therefore, this assay does not discriminate between
antibodies with sub-nanomolar affinities.

201

202 Monoclonal antibodies and mouse polyclonal sera

203 Mouse (12) and human (14) monoclonal antibodies were isolated as previously

204 described. Balb/c mice (five per group) were immunized by footpad injection with

205 5 x 10⁴ VRPs expressing norovirus capsid gene (GII.4-1987, GII.4-2002, GII.4-

206 2006b, GII.4-2009, P.D1, or P.D302). Mice were boosted on day 21, euthanized

207 7 days post-boost, and sera were harvested. This study followed all institutional

208 guidelines for animal care and experimentation (IACUC guidelines).

209

210 Antigenic Cartography

211 We utilized multi-dimensional scaling (MDS) approaches as described and 212 implemented within the AntigenMap 3D software (39, 40). The EC₅₀ blockade 213 titers of various sera against a panel of VLPs were normalized to maximum 214 blockade titer of each sera, as well as to the maximum overall blockade titer 215 across sera (Normalization method 1 in AntigenMap 3D). Normalized values 216 were used to calculate Euclidean distances, D, between each pair of VLPs. For 217 greater analytic, visualization, and graphical purposes, we then utilized 218 Matlab8.1's (MathWorks Inc, Natick, MA) cmdscale function to determine the

219 XYZ coordinates such that the data can be displayed in 3 dimensions while

- 220 maintaining the underlying Euclidean distances directly calculated from the data.
- 221 We utilized R (www.r-project.org), with the package rgl for 3D visualization of
- these data. We confirmed the output of our pipeline with that produced by
- 223 AntigenMap 3D.

224 Results

225 Comparison of sequence changes among chronic infection isolates GII.4-

226 **2006b.**

Previous work has shown that changes identified in a few key surface exposed epitopes correlate with shifts in GII.4 norovirus antigenicity (11, 13-15), including residues in Epitope A (294, 296-298, 368, and 372) (13), Epitope D (393-395) (14), and Epitope E (407, 412-413) (15). Changes in these residues likely alter the ability of preexisting immunity to neutralize the virus, selecting for the emergence of new epidemic strains.

233 To study the within-host antigenic evolution of noroviruses during a 234 chronic human infection, we aligned the sequence of the capsid P2 domains of 235 GII.4-2006b, P.D1, and P.D302 to examine sequential amino acid changes from 236 GII.4-2006b through P.D302 after at least 10 months of within-host evolution 237 (23). Note that day 1 and day 302 refer to the days of sample collection and not 238 from beginning of infection, as the time between the beginning of infection and 239 the collection of the day 1 sample is unknown. Between VP1 amino acid 240 positions 248-434, there are 9 differences between GII.4-2006b and P.D1. After 241 10 months, there were 15 additional differences between P.D1 and P.D302, and 242 20 differences between GII.4-2006b and P.D302 located between these amino 243 acid positions (Figure 1A). Similarly, there are 16 differences spanning this 244 domain between GII.4-2006b and subsequent epidemic strains, GII.4-2009 and 245 GII.4-2012. Two of the differences between GII.4-2006b and P.D1 (S368A and 246 S393G) and four of the differences between GII.4-2006b and P.D302 (A294G,

247	S296T, S368A, and N412D) are located within blockade epitope sites (Figure
248	1B). Four differences in blockade epitope residues also exist between P.D1 and
249	P.D302 (A294G, S296T, G393S, N412D) (Figure 1B). We synthesized GII.4-
250	2006b, P.D1, and P.D302 genes, expressed VLPs representing these strains,
251	and measured differences in antigenicity and HBGA binding among the chronic
252	infection isolates and GII.4-2006b using biological assays. In addition, several
253	amino acid substitutions present in the chronic infection strains that are
254	conserved in past epidemic strains may also influence the antigenic and HBGA
255	binding characteristics of epitope sites A (292, 295, 373), D (391), and E (414)
256	(Figure 1B) based on their position relative to these epitopes in GII.4 homology
257	models (Figure 1C).
258	Comparison of HBGA binding in chronic infection isolates to GII.4-2006b.
258 259	Comparison of HBGA binding in chronic infection isolates to GII.4-2006b. To evaluate differences in HBGA binding preferences among GII.4-2006b,
258 259 260	Comparison of HBGA binding in chronic infection isolates to Gll.4-2006b. To evaluate differences in HBGA binding preferences among Gll.4-2006b, P.D1, and P.D302, we measured VLP binding to synthetic biotinylated
258 259 260 261	 Comparison of HBGA binding in chronic infection isolates to Gll.4-2006b. To evaluate differences in HBGA binding preferences among Gll.4-2006b, P.D1, and P.D302, we measured VLP binding to synthetic biotinylated carbohydrates (A, B, Le^a, Le^b, Le^x, Le^y, H type 1, and H type 3). As previously
258 259 260 261 262	Comparison of HBGA binding in chronic infection isolates to Gll.4-2006b. To evaluate differences in HBGA binding preferences among Gll.4-2006b, P.D1, and P.D302, we measured VLP binding to synthetic biotinylated carbohydrates (A, B, Le ^a , Le ^b , Le ^x , Le ^y , H type 1, and H type 3). As previously reported, Gll.4-2006b bound A, B, Le ^b , Le ^y , and H type 3 (41). In contrast,
258 259 260 261 262 263	 Comparison of HBGA binding in chronic infection isolates to Gll.4-2006b. To evaluate differences in HBGA binding preferences among Gll.4-2006b, P.D1, and P.D302, we measured VLP binding to synthetic biotinylated carbohydrates (A, B, Le^a, Le^b, Le^x, Le^y, H type 1, and H type 3). As previously reported, Gll.4-2006b bound A, B, Le^b, Le^y, and H type 3 (41). In contrast, chronic infection strain VLPs exhibited differential HBGA binding profiles
258 259 260 261 262 263 263	Comparison of HBGA binding in chronic infection isolates to Gll.4-2006b. To evaluate differences in HBGA binding preferences among Gll.4-2006b, P.D1, and P.D302, we measured VLP binding to synthetic biotinylated carbohydrates (A, B, Le ^a , Le ^b , Le ^x , Le ^y , H type 1, and H type 3). As previously reported, Gll.4-2006b bound A, B, Le ^b , Le ^y , and H type 3 (41). In contrast, chronic infection strain VLPs exhibited differential HBGA binding profiles compared to Gll.4-2006b and to each other (Table 1). P.D1 was able to bind A,
258 259 260 261 262 263 264 265	Comparison of HBGA binding in chronic infection isolates to Gll.4-2006b. To evaluate differences in HBGA binding preferences among Gll.4-2006b, P.D1, and P.D302, we measured VLP binding to synthetic biotinylated carbohydrates (A, B, Le ^a , Le ^b , Le ^x , Le ^y , H type 1, and H type 3). As previously reported, Gll.4-2006b bound A, B, Le ^b , Le ^y , and H type 3 (41). In contrast, chronic infection strain VLPs exhibited differential HBGA binding profiles compared to Gll.4-2006b and to each other (Table 1). P.D1 was able to bind A, B, and H type 3, while P.D302 bound only B and H type 3 synthetic biotinylated
258 259 260 261 262 263 264 265 266	Comparison of HBGA binding in chronic infection isolates to Gll.4-2006b. To evaluate differences in HBGA binding preferences among Gll.4-2006b, P.D1, and P.D302, we measured VLP binding to synthetic biotinylated carbohydrates (A, B, Le ^a , Le ^b , Le ^x , Le ^y , H type 1, and H type 3). As previously reported, Gll.4-2006b bound A, B, Le ^b , Le ^y , and H type 3 (41). In contrast, chronic infection strain VLPs exhibited differential HBGA binding profiles compared to Gll.4-2006b and to each other (Table 1). P.D1 was able to bind A, B, and H type 3, while P.D302 bound only B and H type 3 synthetic biotinylated HBGAs. This indicates that HBGA binding preferences may be altered over time
258 259 260 261 262 263 264 265 266 267	Comparison of HBGA binding in chronic infection isolates to Gll.4-2006b. To evaluate differences in HBGA binding preferences among Gll.4-2006b, P.D1, and P.D302, we measured VLP binding to synthetic biotinylated carbohydrates (A, B, Le ^a , Le ^b , Le ^x , Le ^y , H type 1, and H type 3). As previously reported, Gll.4-2006b bound A, B, Le ^b , Le ^y , and H type 3 (41). In contrast, chronic infection strain VLPs exhibited differential HBGA binding profiles compared to Gll.4-2006b and to each other (Table 1). P.D1 was able to bind A, B, and H type 3, while P.D302 bound only B and H type 3 synthetic biotinylated HBGAs. This indicates that HBGA binding preferences may be altered over time during chronic infection, perhaps influenced by individual within host HBGA

269

expression phenotypes.

268

270 Reactivity with Gll.4 Mouse and Human mAbs

271	To measure antigenic differences among VLPs representing GII.4-2006b
272	and chronic strains P.D1 and P.D302, we performed enzyme-linked
273	immunoassays (EIAs) using mouse and human mAbs. We tested five GII.4-
274	2006b mouse mAbs (G2, G3, G4, G6, G7) and two GII.4 human mAbs (NVB111,
275	NVB43.9), all of which target epitope site A residues (294, 296-298, 368, and
276	372), for EIA binding with GII.4-2006b, P.D1, and P.D302 VLPs. GII.4-2006b and
277	P.D1 differ in one epitope site A position, where P.D1 contains S368A compared
278	to GII.4-2006b. P.D302 is different from GII.4-2006b at 3/6 epitope site A
279	residues: A294G, S296T, and S368A, while P.D1 and P.D302 are different at 2/6
280	epitope site A residues: A294G and S296T. We also tested reactivity of these
281	VLPs with one human mAb (NVB97), which targets epitope site D residues (393-
282	395). While GII.4-2006b and P.D302 share identical epitope site D residues,
283	P.D1 has an S393G change compared to GII.4-2006b. We additionally tested
284	one human mAb (NVB71.4) that targets an unmapped conserved GII.4 epitope
285	(14). Consistent with previously-reported results, all mAbs reacted strongly with
286	GII.4-2006b VLPs (12, 14) (Table 2). In contrast, EC_{50} values for P.D1 VLPs
287	were significantly different (P<0.05) from GII.4-2006b VLPs for mouse mAbs G2,
288	G4, G6, and human mAbs NVB43.9, and NVB111 (Table 2). Moreover, EC_{50}
289	values for P.D302 VLPs were significantly different from GII.4-2006b for all mAbs
290	except NVB71.4, and different from P.D1 VLPs for all but NVB71.4 and NVB111
291	(Table 2). This indicates that epitope sites A and D are antigenically distinct

among GII.4-2006b, P.D1, and P.D302, demonstrating antigenic variation over

the course of chronic infection in important blockade epitopes.

294

295 Blockade Activity for Gll.4 Mouse and Human mAbs

296 Compared to EIA, neutralization is a more relevant measure of functional 297 antigenic change. To test potential neutralization activity of mAbs (GII.4-2006b-298 G2, G3, G4, G6, and G7, and NVB43.9, NVB71.4, NVB97, NVB111) against 299 GII.4-2006b, P.D1, and P.D302 VLPs, we performed blockade assays, a 300 correlate of protective immunity (42) and a neutralization surrogate. Consistent 301 with previous findings, all mAbs were able to block ligand-VLP interactions for 302 GII.4-2006b (12, 14) (Figure 2). Likewise, P.D1 was blocked by all mAbs (Figure 303 2). However, EC₅₀ blockade titers for two out of five GII.4-2006b mouse mAbs, 304 G2 (Figure 2A) and G7 (Figure 2E), and two of four GII.4 human mAbs, NVB111 305 (Figure 2G) and NVB71.4 (Figure 2I), were significantly different, requiring 7.1X, 306 2X, 2X, 3.2X more antibody, respectively, for blockade compared to GII.4-2006b 307 VLPs. P.D302 VLP-ligand binding was blocked by GII.4-2006b mouse mAbs G2 308 (Figure 2A), G6 (Figure 2D), G7 (Figure 2E), but not by G3 (Figure 2B) or G4 309 (Figure 2C), and blocked by GII.4 human mAb NVB71.4 (Figures 2I), but not by 310 NVB43.9 (Figure 2F), NVB111 (Figure 2G), or NVB97 (Figures 2H). EC₅₀ 311 blockade titers were significantly different between GII.4-2006b and P.D302 for 312 G2, G6, G7, and NVB71.4, requiring 12.6X, 15.9X, 12X, and 6.8X more mAb 313 compared to GII.4-2006b, respectively. Overall, EC₅₀ blockade titers were 314 significantly higher for P.D302 compared to both GII.4-2006 and P.D1 for all

tested mAbs, demonstrating major antigenic changes in epitope sites A and D

316 over the course of chronic norovirus infection.

317

318 Blockade Response of Strain Specific Mouse Polyclonal Sera

319 While monoclonal antibodies are informative of the changes in a single 320 epitope, polyclonal sera are needed to evaluate global antigenic changes. To 321 measure differences in the total antibody response, we immunized mice with 322 virus replicon particles (VRPs) expressing the capsid gene from GII.4-2006b. 323 P.D1, and P.D302 or GII.4-2009, the consecutive outbreak strain following GII.4-324 2006, and measured the induced serum blockade responses (Figure 3). Mice 325 immunized with GII.4-2006b VRPs mounted a robust blockade response against 326 homotypic GII.4-2006b VLPs, while significantly more sera was needed to block 327 GII.4-2009, P.D1, and P.D302 VLPs (16X, 9.4X, and 12.7X, respectively) (Figure 328 3A). Sera from mice immunized with GII.4-2009 VRPs induced a strong 329 blockade response against GII.4-2009 VLPs; however, significantly more sera 330 was needed to block GII.4-2006b and P.D302 VLPs, with 39X more sera needed 331 to block P.D302 VLPs compared to GII.4-2009 (Figure 3B). Sera from mice 332 immunized with P.D1 VRPs most efficiently blocked homotypic P.D1 VLPs. EC₅₀ 333 values indicated that more sera is required to block GII.4-2009 (3X) and P.D302 334 (25.8X) than P.D1, while GII.4-2006b and P.D1 EC₅₀ titers were not significantly 335 different (Figure 3C). Sera from mice immunized with P.D302 VRPs efficiently 336 blocked P.D302 VLP-ligand interactions and weakly blocked GII.4-2006b and 337 P.D1, requiring 92X and 61X more sera, respectively. P.D302 sera was unable

to block GII.4-2009 VLPs (Figure 3D). This data shows that chronic isolate VLPs
induce antibody responses that are different from the parental strain and each
other, demonstrating major changes in total antibody response over the course of
chronic infection.

342

343 Antigenic Cartography

344 In order to further describe and visualize the differences between virus 345 strains in their antigenic properties, we utilized the multi-dimensional scaling 346 (MDS) approach known as antigenic cartography (39,40). Specifically, we used 347 the pipeline described in AntigenMap 3D (39) to measure and visualize the 348 antigenic relationships among outbreak strains GII.4-1987, GII.4-1997, GII.4-349 2002, GII.4-2006b, GII.4-2009, and GII.4-2012 as well as chronic isolates P.D1 350 and P.D302, explicitly contrasting antigenic relationships between naturally 351 occurring epidemic strains as well as intra-host variants. The antigenic distances 352 between strains were measured using GII.4-1987, GII.4-2002, GII.4-2006b, 353 GII.4-2009, P.D1, and P.D302 mouse sera EC₅₀ blocking titers against VLPs 354 representative of the specified GII.4 strains, and Euclidean distance values were 355 calculated based on these titers (Figure 4A). Consistent with earlier findings (12), 356 early (GII.4-1987, GII.4-1997, GII.4-2002) and late strains (GII.4-2006b, GII.4-357 2009, GII.4-2012) formed distinct clusters (Figure 4B-C). Not surprisingly, the 358 early within host variant, P.D1, grouped closely with late strains (Figure 4B-C), 359 reflecting its origins from the GII.4-2006b lineage. In contrast, P.D302 did not 360 group with any other strain and was antigenically distant from both the early and

361	contemporary isolates. In order to confirm the visual analysis of these antigenic
362	similarities, we compared Euclidean distances, D, between each pair of VLPs
363	across all serum utilized for antigenic cartography (the Euclidean distance
364	measures the straight-line distance between two points in a multidimensional
365	space). We first examined the groupings of early and late GII.4 outbreak strains.
366	The average distance within a group was 3.79 (range 2.11-6.39) while the
367	average distance between early and contemporary clusters was 10.7 (range
368	8.49-13.32), with each distance unit corresponding to a roughly 1.25-fold
369	difference in blockade response between viruses (Figure 4A). As shown in
370	Figures 4B and 4C, P.D1 grouped closely with late outbreak strain VLPs, with an
371	average D of 3.46 (range 2.26-5.09) (Figure 4A). In contrast, P.D302 was quite
372	distinct from both early and late outbreak strain viruses, as well as from P.D1,
373	with an average D of 9.92 (range 8.73-11.62) (Figure 4A). During an ~10 month
374	chronic infection in this individual, our data demonstrate that intra-host evolution
375	can generate novel variants with unique HBGA binding patterns and encode
376	unique antigenic differences that are as dramatically distinct as time-ordered,
377	epidemic outbreak strains that emerge in human populations.
378	

379 Expansion of Epitope Site A

We next determined whether novel sites of within host evolution can refine existing epitope maps and identify potential immunogenic changes in epidemic strains of the future. Amino acid position 373 exhibited a N373H change between P.D1 and P.D302 but was conserved in major GII.4 epidemic strains up until a

384	N373R substitution emerged in GII.4-2012 Sydney. Although not supported with
385	empirical data, recent work by Allen et al (43) suggests that this change in the
386	Sydney strain may have impacted its emergence. Since changes to 373 have
387	never been shown to influence immunogenicity, and it is not included as a
388	diagnostic A epitope site residue, this potentially hampers new epidemic strain
389	identification. To determine whether position 373 contributes to antigenic
390	differences in epitope A, we used the blockade assay to test potential
391	neutralization of VLPs representing parental strains GII.4-2009 New Orleans,
392	GII.4-2012 Sydney, and chimeric sequences GII.4-2012.09A, GII.4-
393	2012.09A.R373N, and GII.4-2012.R373N (Figure 5) by epitope A targeting
394	human mAb 43.9. GII.4-2009 was efficiently blocked by mAb 43.9, while GII.4-
395	2012 required significantly more (55.3X) mAb for blockade. Blockade response
396	was partially restored in chimeras GII.4-2012.09A and GII.4-2012.R373N, but
397	required 1.5X and 4.8X more mAb, respectively, for blockade compared to GII.4-
398	2009. EC ₅₀ blockade titers were not statically different between GII.4-
399	2012.09A.R373N and GII.4-2009 VLPs. Similar trends were seems using mouse
400	mAbs targeting epitope A residues (data not shown).
401	
402	Discussion
403	Noroviruses are an important cause of gastroenteritis in

- 404 immunocompromised individuals (44, 45), who are at increased risk for severe
- 405 disease outcomes (1, 44). Recent vaccine trials utilizing a VLP-based vaccine
- 406 approach support the idea that efficacious vaccines can be generated that elicit

407 short term protection in some healthy individuals, but vaccines may not protect 408 immunocompromised populations, making development of therapeutics that 409 effectively treat or prevent norovirus infections a top health priority. 410 In immunocompetent people, norovirus infection results in acute disease 411 outcomes (46). In contrast, immunocompromised individuals can develop 412 symptomatic disease and high titer viral shedding up to years. Unfortunately, the 413 literature on specific chronically-infected norovirus patient populations is sparse, 414 and duration and severity of chronic norovirus infections is likely influenced by 415 several factors including underlying condition, drug treatment regime, degree of 416 immunosuppression, and the rate of within host virus evolution, making it difficult 417 to define the characteristics of a typical chronic norovirus case. From these 418 limited studies, it is difficult to discern whether there are characteristics of chronic 419 norovirus infection that are broadly applicable to all populations, characteristics 420 that are true to specific populations, or whether characteristics vary by each 421 individual case. Previous work has shown that during the course of chronic 422 infection, virus genetic diversity can expand quickly (22, 23, 25, 35); however, it 423 was previously unknown whether this genetic variation translated into antigenic 424 variation or the emergence of antigenically unique isolates that differ significantly 425 from contemporary epidemic strains. For the first time, our work clearly 426 demonstrates the potential for significant antigenic variation over the course of 427 chronic infection within an individual, which is important in terms of both 428 therapeutic treatment considerations and for studying the potential role for 429 chronic shedders as reservoirs for evolving new outbreak strains.

430	Since there is no known animal reservoir for human noroviruses (47), the
431	available data indicate that new GII.4 strains likely arise naturally within the
432	human population by epochal evolution, immune driven selection, and inter-host
433	transmission over time (12-14, 16, 17). The occurrence of frequent long-term
434	chronic infections in immunosuppressed patients also represents a possible
435	source of new GII.4 norovirus strains with epidemic potential (23, 25, 35), as
436	these patients may provide an appropriate environment for sustained immune-
437	directed molecular evolution by targeting previously identified surface exposed
438	blockade epitopes for mutation driven escape. Evidence supporting this
439	hypothesis includes sequence data from chronically infected patients that
440	demonstrate the emergence of genetic changes in GII.4 blockade epitopes that
441	modulate inter-host antigenicity (22, 35). This diverse pool may contain variants
442	antigenically distinct from the predominant circulating strain, allowing emergence
443	of a new strain under the right conditions (25). However, host and environmental
444	factors coupled with the type and degree of immunosuppression may affect the
445	rate and complexity of intra-host evolution that occurs over time (23), and future
446	work that evaluates the role of different immunosuppressive conditions on intra-
447	host norovirus evolution are needed.
448	Our work demonstrated intra-host antigenic changes within epitope site A
449	(amino acids 294, 296-298, 368, and 372). Interestingly, P.D302 contained

450 residue substitutions in amino acid positions 292, 295, and 373, which are

451 conserved in major GII.4 outbreak strains, except for 373, which was altered in

452 the most recent predominant strain, GII.4-2012 Sydney. Changes in these

JVI Accepts published online ahead of print

453	residues likely impact epitope A antibody binding and blockade response either
454	by altering the conformational landscape of the epitope or directly inhibiting the
455	interaction of the antibody with the capsid. Using GII.4-2009/GII.4-2012 chimeric
456	VLPs, we demonstrated that residues at position 373 impact the blockade
457	response of human mAb NVB 43.9, an antibody that targets epitope A. This
458	demonstrates that 373 is part of epitope A, expanding this epitope to 7 positions.
459	Furthermore, we suggest that monitoring intra-host evolved strains may provide a
460	novel diagnostic strategy to map key residues capable of mediating antigenic
461	changes in future outbreaks. While positions 292 and 295 have been conserved
462	in previous predominantly-circulating GII.4 strains, their ability to change in this
463	patient and their proximity to known epitope A residues suggest that these
464	residues could potentially impact antigenic change in epitope A in future
465	epidemics, as residue 373 did in GII.4-2012 Sydney.
466	Reactivity and blockade response data for antibody NVB97 demonstrates
467	antigenic evolution in epitope site D during chronic infection. Epitope site D
468	minimally include residues 393-395, is in close proximity to the carbohydrate
469	binding pocket (37), and previous work demonstrates that modulation of residues
470	within this epitope modulate HBGA specificity (7). Evolution in this epitope site is
471	likely driven both by antibody selective pressure and pressure to maintain binding
472	to one or more HBGAs. Despite conservation of residues 393-395 between
473	GII.4-2006b and P.D302, antigenic phenotypes differ significantly, demonstrating
474	that NVB97 recognition is modulated by amino acid positions outside of the
475	previously-defined epitope site D residues. Position 391, which is close to the

476	carbohydrate binding pocket, is conserved in major outbreak strains and between
477	GII.4-2006b and P.D1, and previous work demonstrated that an alanine
478	substitution at this residue had little impact on HBGA binding (48). Neither the
479	antigenic consequences of residue changes nor the impact of other residue
480	substitutions on HBGA binding at this position have been rigorously evaluated,
481	meaning that the D391N change in P.D302 may contribute to both the HBGA
482	reactivity and antibody blockade differences observed for P.D302. To explore
483	this possibility, we created homology models of these P2 domains and compared
484	the predicted polar interactions present in residues 390-395 (Figure 6) among
485	GII.4-2006b, P.D1, and P.D302.
486	Conformational comparisons between GII.4-2006b and P.D1 show
487	general similarities in the shape created by residues 390-395, with exceptions
488	being the loss of a side chain in 393 of P.D1, and slight shifts in position for side
489	chains in residues 394 and 395 (Figure 6A and 6B). These conformational
490	changes appear to impact the polar interactions within these residues, as the
491	loss of the side chain in residue 393 ablates the hydrogen bond present in GII.4-
492	2006b. In addition, the positional shifts in residues 394 and 395 in P.D1 appear
493	to prevent formation of another hydrogen bond present in GII.4-2006b.
494	Conformational comparisons between GII.4-2006b and P.D302 demonstrate that
495	the residue change at 391 has significant impact on the shape and hydrogen
496	bonding networks for residues 390-395 (Figures 6A and 6C). In P.D302, position

497 391 is bent downward, which differs from the position of this amino acid in GII.4-

498 2006b and P.D1. The result of this change is the formation of a hydrogen bond

499	between the side chain and main chain of 391. In addition, though residue 393 is
500	conserved between GII.4-2006b and P.D302, the side chain is shifted downward
501	in P.D302 compared to GII.4-2006b, shifting the position of the hydrogen bond
502	found at this residue. The formation of two additional novel hydrogen bonds
503	between 390 & 393 and 390 & 395 suggests that the 391 residue change and
504	resulting conformational changes allowed for these increased polar interactions.
505	A slight conformational shift in residue 395 in P.D302 appears to ablate a polar
506	interaction found in GII.4-2006b at this position. We also compared polar
507	interactions of GII.4-2006, P.D1, and P.D302 to residues outside of 390-395
508	(Figure 6D-F). GII.4-2006b and P.D1 displayed five conserved polar interactions
509	to surrounding amino acids (Figures 6D and 6E), while P.D302 lost the polar
510	interaction at residue 391 and gained an additional bond at residue 394 (Figure
511	6F).
512	In addition to epitope site D being an antibody blockade epitope, these

513 residues modulate HBGA binding, so evolution in this region is likely driven both 514 by antibody selective pressure and pressure to maintain binding to one or more 515 HBGAs. Interestingly, all three structures maintained the two hydrogen bonds to 516 positions 443 and 444. Residue 443 is in the HBGA binding site (37), and 517 maintaining interaction with this residue may be selected for in this individual in 518 order to retain HBGA binding. The altered HBGA binding profile and reduced 519 NBV 97 binding and blockade for P.D302 may be explained by these polar 520 differences, although this cannot be confirmed without a crystal structure of these 521 P2 domains bound to NVB 97 and HBGAs.

522	Our demonstration of intra-host changes in HBGA binding profiles in a
523	chronically infected immunocompromised patient suggests that selection may
524	favor variants that bind patient-specific HBGAs. While speculative, the potential
525	emergence of intra-host variants that target patient-specific HBGA expression
526	profiles could select for the emergence of novel strains that recognize unique or
527	broad combinations of HBGA patterns, allowing for altered pathogenicity and
528	transmission efficiencies in an individual or across select human populations. We
529	could not evaluate this possibility in our study because the HBGA expression
530	profile of this chronically infected patient is unknown. Future research could
531	evaluate these HBGA phenotypic and FUT 2/3 genotypic relationships using
532	saliva and cells from chronically infected patients.
533	How much intra-host and inter-host antigenic variation is necessary to give
534	rise to a new strain that could escape herd immunity in the general population?
535	Using blockade EC_{50} data from mouse sera against GII.4-2006b, GII.4-2009
536	(representative of a successive outbreak strain), P.D1, and P.D302, we
537	demonstrate that the antigenic variation between P.D1 and P.D302 is 1.5X
538	greater than that seen between GII.4-2006b and GII.4-2009. To further address
539	this question, we used antigenic cartography, which provides easily interpretable
540	measures and visualization of multidimensional antigenic relationships, and has
541	previously been used to study antigenic differences in influenza strains (40, 49).
542	This analysis provided further support for the idea that within-host changes in the
543	virus can equal or exceed those differences seen across successive outbreak
544	strains, with the antigenic space between P.D302 and both GII.4-2006b (D=9.91)

and P.D1 (D=9.15) being greater than the average between the consecutive
outbreak strains used in this study (average D=4.98; range 2.11 to 12.11) and
mirrors the global difference between early GII.4 isolates (1987, 1997, 2002) and
contemporary strains (2006b, 2009, 2012).

549 Antigenic cartography is a relatively new, powerful method with which to 550 simply describe the multidimensional antigenic differences between virus strains. 551 As such, there is room for improvement within these methods. Indeed, more 552 complex statistical models underlying antigenic cartography approaches are 553 being developed to better account for uncertainty within these datasets (49), and 554 more comprehensive surveys of both antisera and natural GII.4 isolates over a 555 30-year time span will better allow for the characterization of antigenic change 556 within noroviruses. Within this study, the use of mouse sera permits us to use an 557 immunologically clean background with no pre-exposure history and provides a 558 clearer starting point to evaluate specific relationships among outbreak strains 559 and the intra-host isolates. Future work will require well defined, time-ordered 560 human sera during natural epidemic outbreaks, time-ordered sera during intra-561 host chronic infections, and synthetic reconstruction of capsids representing both 562 outbreak and unique panels of inter-host variants over time; unfortunately, to 563 date, we have been unable to obtain the samples necessary to pursue this 564 comprehensive investigation. Our data suggest that intra-host evolution over a 565 10-month period can yield sufficient antigenic change to escape existing herd 566 immunity. Clearly, additional work examining norovirus infectivity after prolonged

shedding is needed in order to clarify whether chronically infected patients are aprobable source of novel epidemic strains.

569 Therapeutics are needed to alleviate clinical disease during long-term 570 norovirus infection and prevent the potential emergence of novel antigenic 571 variants with epidemic potential in the general population. Some success using 572 IgG to treat chronic norovirus (32) coupled with our data demonstrating that P.D1 573 is relatively antigenically similar to GII.4-2006b, while P.D302 is antigenically 574 divergent, suggest that treating early during chronic infection may be important 575 for viral clearance and also supports the possibility that similarly-administered 576 broadly neutralizing antibodies may be viable treatment options for patients 577 suffering from long-term norovirus infection. Our work demonstrates that GII.4 578 broadly-neutralizing mAb NVB71.4 retains blockade response against P.D1 and 579 P.D302, even though both these strains are antigenically distinct from GII.4-580 2006b, GII.4-2009, and presumably other major GII.4 strains. This suggests that 581 NVB71.4 or other antibodies with broad cross-blockade activity could be isolated 582 and successfully used as norovirus therapeutics. Importantly, different 583 monoclonal antibodies will be needed that target other GI and GII strain chronic 584 infections. Furthermore, increased surveillance of norovirus isolates from 585 chronically infected patients as well as deep sequencing of patient isolates 586 should be considered in order to better understand the transmission dynamics 587 and genetic potential of norovirus isolates from these patients since these are 588 likely different from what is seen in the general population. Overall, our work 589 supports the idea that chronically infected individuals are potential reservoirs for

antigenically novel norovirus strains, and further work to characterize their role in
transmission and emergent norovirus outbreaks and development of therapeutics
to combat chronic infections should receive a top priority.

593

594 Acknowledgements

595 This work was supported by grant AI056351 from the National Institutes of 596 Health, Allergy and Infectious Diseases and by institutional training grant T32-597 Al007419 from the National Institute of Health. The funders had no role in study 598 design, data collection and analysis, decision to publish, or preparation of the 599 manuscript. We thank Victoria Madden and C. Robert Bagnell, Jr., of the 600 Microscopy Services Laboratory, Department of Pathology and Laboratory 601 Medicine, University of North Carolina—Chapel Hill, for expert technical support. 602 We also acknowledge the UNC-CH Genome Analysis Facility.

603

604 Figure Legends

Figure 1: Sequence Changes in Chronically Infected Patient Strains
Compared to Gll.4-2006b.

607 (A) Available capsid amino acid sequences for GII.4-2006b, P.D1 and P.D302

were aligned using Clustal Omega, and sequence differences among GII.4-2006,

609 P.D1, and P.D302 are shown. GII.4-2006b residues are shown in purple. P.D1

and P.D302 differences from GII.4-2006b are indicated in light blue, while orange

611 indicates a reversion to the GII.4-2006b residues. (B) Alignment of GII.4-2006b,

612	P.D1, and P.D302 amino acid sequences in and around Epitopes A, D, and E.
613	Green indicates a position within a defined epitope, while white indicates nearby
614	residues that may impact antigenicity in these epitopes. Yellow indicates an
615	amino acid position newly defined as part of epitope A. (C) Structural homology
616	models of GII.4-2006b, P.D1, and P.D302 capsid P2 dimers shown from top
617	view. Purple shows location of Epitopes A, D, and E on the capsid P2 dimer,
618	while green shows changing amino acid residues in P.D1 and P.D302 compared
619	to GII.4-2006b.

620

621 Table 1: Chronic Infection Strain HBGA Binding Preferences

622 VLPs representing GII.4-2006b, P.D1, and P.D302 were assayed for their ability

623 to bind synthetic biotinylated HBGAs A, B, Le^a, Le^b, Le^x, Le^y, H type 1, and H

type 3 by carbohydrate binding assay. Positive reactivity was defined as a valuegreater or equal to 3X the background binding value.

626

Table 2: Gll.4 Mouse and Human mAb EIA Reactivity with Chronic Infection Strains

- 629 Mouse and human GII.4 monoclonal antibodies against were assayed for
- 630 reactivity with GII.4-2006b, P.D1, and P.D302 VLPs by multiple dilution EIA. The
- 631 mean percent binding (percent of the VLP bound to antibody in the dilution
- 632 course compared to the amount of VLP bound with antibody at 1 ug/mL) of each
- 633 VLP was fit with a sigmoidal curve, and the mean EC₅₀ (µg/ml) EIA reactivity

634	titers for GII.4-2006b, P.D1, and P.D302 were calculated. $*$ Mean EC ₅₀ EIA
635	reactivity titer for the test VLP is significantly different from the mean EC_{50} for
636	GII.4-2006b (light grey), or ** was significantly different from both GII.4-2006b
637	and P.D1 (p<0.05) (dark grey). Monoclonal antibodies that did not demonstrate
638	EIA reactivity at or above OD450 nm 0.2 at 1 ug/mL with a particular VLP are
639	denoted by an EC ₅₀ of >1 ug/mL. Statistics were calculated by One-way ANOVA
640	with Bonferroni post test.

641

642 Figure 2: GII.4 Mouse and Human mAb Blockade Response Against

643 Chronic Infection Strains

644 (A-I) Mouse and human GII.4 monoclonal antibodies were assayed for ability to 645 block GII.4-2006b, P.D1, and P.D302 VLP interaction with carbohydrate ligand. 646 The mean percent control binding (percent of the VLP bound to carbohydrate 647 ligand in the presence of an antibody compared to the amount of VLP bound with 648 no antibody present) of each VLP was fit with a sigmoidal curve, and the mean 649 EC₅₀ (µg/ml) blockade titers for GII.4-2006b, P.D1, and P.D302 were calculated. 650 Error bars represent 95% confidence intervals. * Mean EC₅₀ blockade titer for the 651 test VLP is significantly different from the mean EC_{50} for GII.4-2006b (p<0.05), or 652 ** was significantly different from both GII.4-2006b and P.D1 (p<0.05).

653 Monoclonal antibodies that did not block a particular VLP were assigned an EC₅₀

of 2X the upper limit of detection for statistical analysis and are shown on the

graph by data points above the upper limit of detection (dashed line). Statisticswere calculated by One-way ANOVA with Bonferroni post test.

657

Figure 3: Blockade Activity of Mouse Polyclonal Sera Against Homotypic and Heterotypic VLPs

660 Mice were immunized with VRP expressing the capsid gene of GII.4-2006b,

661 GII.4-2009, P.D1, and P.D302, and sera collected from these mice were tested

662 for blockade activity against GII.4-2006b, GII.4-2009, P.D1, and P.D302 VLPs.

663 (A) Blockade activity of sera from mice immunized against GII.4-2006b (A), GII.4-

664 2009 (B), P.D1 (C), and P.D302 (D) with homotypic and heterotypic VLPs. The

665 mean percent control binding (percent of the VLP bound to carbohydrate ligand

666 in the presence of sera compared to the amount of VLP bound with no sera

667 present) of each VLP was fit with a sigmoidal curve, and the mean EC_{50} (% sera)

668 blockade titers for GII.4-2006b, GII.4-2009, P.D1, and P.D302 were calculated.

669 Error bars represent 95% confidence intervals. * Mean EC₅₀ blockade titer for the

670 test VLP is significantly different from the mean EC₅₀ for the homotypic strain

671 (p<0.05). Sera that did not block a particular VLP were assigned an EC₅₀ of 10%

672 sera for statistical analysis and are shown on the graph by data points above the

673 upper limit of detection (dashed line). Statistics were calculated by One-way

674 ANOVA with Bonferroni post test.

675

676 Figure 4: Antigenic Cartography for GII.4 Noroviruses

677	Multidimentional Scaling (MDS) was used to identify the antigenic relationships
678	between different norovirus strains. A) Euclidean antigenic distances between
679	virus strains were calculated based on the EC_{50} efficacy of antisera raised
680	against GII.4-1987, GII.4-2002, GII.4-2006b, GII.4-2009, P.D1 and P.D302 VLPs.
681	Green squares represent distances within either the early (1987, 1998 and 2002)
682	or late (2006, 2009 and 2012) virus groups. Purple squares show the distances
683	between early and late virus groups. (B-C) We determined XYZ-coordinates that
684	maintain the underlying Euclidean distances between viruses, while illustrating
685	the relationships between GII.4 norovirus strains, with each map-distance
686	roughly corresponding to a \sim 1.25-fold change in blockade response. B) Early
687	strains GII.4-1987 (yellow), GII.4-1997 (red), and GII.4-2002 (light blue) grouped
688	together (lower right hand group), and late strains GII.4-2006b (light purple),
689	GII.4-2009 (dark blue), and GII.4-2012 (dark purple) grouped together (lower left
690	hand group). P.D1 grouped with late strains, closest to GII.4-2006b, while
691	P.D302 was separate from either late or early strains (upper position). C) Side
692	view of the same 3D graph showing the antigenic differences between strains.

693

694 Figure 5: Expansion of Epitope Site A

695 Epitope A targeting human GII.4 mAb 43.9 was assayed for its ability to block

696 GII.4-2009 New Orleans, GII.4-2012 Sydney, GII.4-2012.09A, GII.4-2012.R373N,

and GII.4-2012.09A.R373N VLP interaction with carbohydrate ligand. The mean

698 percent control binding (percent of the VLP bound to carbohydrate ligand in the

699 presence of an antibody compared to the amount of VLP bound with no antibody

700	present) of each VLP was fit with a sigmoidal curve, and the mean $\text{EC}_{50}~(\mu\text{g/ml})$
701	blockade titers for all VLPs were calculated. Error bars represent 95% confidence
702	intervals. Statistics were calculated by One-way ANOVA with Dunnett's post
703	test. * Mean EC $_{50}$ blockade titer was significantly different from GII.4-2009.

704

705 Figure 6: Comparison of Epitope Site D Polar Interactions Among GII.4-

706 **2006 and Chronic Infection Strains**

- 707 Pymol was used to model the polar interactions within residues 390-395 (A-C)
- and interactions between these residues and surrounding residues (D-F). GII.4-
- 2006b is shown in purple (A and D), P.D1 is shown in teal (B and E), and P.D302
- 710 is shown in pink (C and F). Residues 390-395 are shown in orange for GII.4-
- 711 2006b, yellow for P.D1, and aqua for P.D302. Dotted lines represent structure-
- 512 based predicted polar interactions. Dark purple residues represent positions that
- 713 interact with HBGAs (D-F).

714

715 References

716 717

- Mattner F, Sohr D, Heim A, Gastmeier P, Vennema H, Koopmans M. 2006. Risk groups for clinical complications of norovirus infections: an outbreak investigation. Clin Microbiol Infect 12:69-74.
 Murata T, Katsushima N, Mizuta K, Muraki Y, Hongo S, Matsuzaki Y. 2007.
- Prolonged norovirus shedding in infants <or=6 months of age withgastroenteritis. Pediatr Infect Dis J 26:46-49.
- Okada M, Tanaka T, Oseto M, Takeda N, Shinozaki K. 2006. Genetic analysis of noroviruses associated with fatalities in healthcare facilities. Arch Virol 151:1635-1641.

4.	Johnston CP, Qiu H, Ticehurst JR, Dickson C, Rosenbaum P, Lawson P, Stokes
	AB, Lowenstein CJ, Kaminsky M, Cosgrove SE, Green KY, Perl TM. 2007.
	Outbreak management and implications of a nosocomial norovirus outbreak.
	Clin Infect Dis 45:534-540.
5.	Kroneman A, Vega E, Vennema H, Vinje J, White PA, Hansman G, Green K,
	Martella V, Katayama K, Koopmans M. 2013. Proposal for a unified norovirus
	nomenclature and genotyping. Arch Virol 158:2059-2068.
6.	Prasad BV, Hardy ME, Dokland T, Bella J, Rossmann MG, Estes MK. 1999. X-
	ray crystallographic structure of the Norwalk virus capsid. Science 286:287-
	290.
7.	Lindesmith LC, Donaldson EF, Lobue AD, Cannon JL, Zheng DP, Vinje J, Baric
	RS. 2008. Mechanisms of GII.4 norovirus persistence in human populations.
	PLoS Med 5:e31.
8.	Donaldson EF, Lindesmith LC, Lobue AD, Baric RS. 2008. Norovirus
	pathogenesis: mechanisms of persistence and immune evasion in human
	populations. Immunol Rev 225:190-211.
9.	Fankhauser RL, Monroe SS, Noel JS, Humphrey CD, Bresee JS, Parashar UD,
	Ando T, Glass RI. 2002. Epidemiologic and molecular trends of "Norwalk-like
	viruses" associated with outbreaks of gastroenteritis in the United States. J
	Infect Dis 186:1-7.
10.	Siebenga JJ, Vennema H, Renckens B, de Bruin E, van der Veer B, Siezen RJ,
	Koopmans M. 2007. Epochal evolution of GGII.4 norovirus capsid proteins
	from 1995 to 2006. J Virol 81:9932-9941.
11.	Allen DJ, Noad R, Samuel D, Gray JJ, Roy P, Iturriza-Gomara M. 2009.
	Characterisation of a GII-4 norovirus variant-specific surface-exposed site
	involved in antibody binding. Virol J 6:150.
12.	Lindesmith LC, Donaldson EF, Baric RS. 2011. Norovirus GII.4 strain
	antigenic variation. J Virol 85:231-242.
13.	Debbink K, Donaldson EF, Lindesmith LC, Baric RS. 2012. Genetic mapping of
	a highly variable norovirus GII.4 blockade epitope: potential role in escape
	from human herd immunity. J Virol 86:1214-1226.
14.	Lindesmith LC, Beltramello M, Donaldson EF, Corti D, Swanstrom J, Debbink
	K, Lanzavecchia A, Baric RS. 2012. Immunogenetic mechanisms driving
	norovirus GII.4 antigenic variation. PLoS Pathog 8:e1002705.
15.	Lindesmith LC, Debbink K, Swanstrom J, Vinje J, Costantini V, Baric RS,
	Donaldson EF. 2012. Monoclonal antibody-based antigenic mapping of
	norovirus GII.4-2002. J Virol 86:873-883.
16.	Lindesmith LC, Costantini V, Swanstrom J, Debbink K, Donaldson EF, Vinje J,
	Baric RS. 2013. Emergence of a norovirus GII.4 strain correlates with changes
	in evolving blockade epitopes. J Virol 87:2803-2813.
17.	Debbink K, Lindesmith LC, Donaldson EF, Costantini V, Beltramello M, Corti
	D, Swanstrom J, Lanzavecchia A, Vinje J, Baric RS. 2013. Emergence of New
	Pandemic GII.4 Sydney Norovirus Strain Correlates with Escape from Herd
	Immunity. J Infect Dis.
	 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.

771	18.	Rockx B, De Wit M, Vennema H, Vinje J, De Bruin E, Van Duynhoven Y,
772		Koopmans M. 2002. Natural history of human calicivirus infection: a
773		prospective cohort study. Clin Infect Dis 35:246-253.
774	19.	Obara M, Hasegawa S, Iwai M, Horimoto E, Nakamura K, Kurata T, Saito N, Oe
775		H, Takizawa T. 2008. Single base substitutions in the capsid region of the
776		norovirus genome during viral shedding in cases of infection in areas where
777		norovirus infection is endemic. J Clin Microbiol 46:3397-3403.
778	20.	Siebenga J, Kroneman A, Vennema H, Duizer E, Koopmans M. 2008. Food-
779		borne viruses in Europe network report: the norovirus GII.4 2006b (for US
780		named Minerva-like, for Japan Kobe034-like, for UK V6) variant now
781		dominant in early seasonal surveillance. Euro Surveill 13.
782	21.	Nilsson M, Hedlund KO, Thorhagen M, Larson G, Johansen K, Ekspong A,
783		Svensson L. 2003. Evolution of human calicivirus RNA in vivo: accumulation
784		of mutations in the protruding P2 domain of the capsid leads to structural
785		changes and possibly a new phenotype. J Virol 77:13117-13124.
786	22.	Schorn R, Hohne M, Meerbach A, Bossart W, Wuthrich RP, Schreier E, Muller
787		NJ, Fehr T. 2010. Chronic norovirus infection after kidney transplantation:
788		molecular evidence for immune-driven viral evolution. Clin Infect Dis
789		51:307-314.
790	23.	Hoffmann D, Hutzenthaler M, Seebach J, Panning M, Umgelter A, Menzel H,
791		Protzer U, Metzler D. 2012. Norovirus GII.4 and GII.7 capsid sequences
792		undergo positive selection in chronically infected patients. Infect Genet Evol
793		12:461-466.
794	24.	Ludwig A, Adams O, Laws HJ, Schroten H, Tenenbaum T. 2008. Quantitative
795		detection of norovirus excretion in pediatric patients with cancer and
796		prolonged gastroenteritis and shedding of norovirus. J Med Virol 80:1461-
797		1467.
798	25.	Bull RA, Eden JS, Luciani F, McElroy K, Rawlinson WD, White PA. 2012.
799		Contribution of intra- and interhost dynamics to norovirus evolution. J Virol
800		86:3219-3229.
801	26.	Koo HL, DuPont HL. 2009. Noroviruses as a potential cause of protracted and
802		lethal disease in immunocompromised patients. Clin Infect Dis 49:1069-
803		1071.
804	27.	Capizzi T, Makari-Judson G, Steingart R, Mertens WC. 2011. Chronic diarrhea
805		associated with persistent norovirus excretion in patients with chronic
806		lymphocytic leukemia: report of two cases. BMC Infect Dis 11:131.
807	28.	Boillat Blanco N, Kuonen R, Bellini C, Manuel O, Estrade C, Mazza-Stalder J,
808		Aubert JD, Sahli R, Meylan P. 2011. Chronic norovirus gastroenteritis in a
809		double hematopoietic stem cell and lung transplant recipient. Transpl Infect
810		Dis 13:213-215.
811	29.	Florescu DF, Hill LA, McCartan MA, Grant W. 2008. Two cases of Norwalk
812		virus enteritis following small bowel transplantation treated with oral
813		human serum immunoglobulin. Pediatr Transplant 12:372-375.
814	30.	Florescu DF, Hermsen ED, Kwon JY, Gumeel D, Grant WJ, Mercer DF, Kalil AC.
815		2011. Is there a role for oral human immunoglobulin in the treatment for

816		norovirus enteritis in immunocompromised patients? Pediatr Transplant
817		15:718-721.
818 819	31.	Ebdrup L, Bottiger B, Molgaard H, Laursen AL. 2011. Devastating diarrhoea in a heart-transplanted patient. J Clin Virol 50:263-265.
820	32.	Chagla 7. Quirt I. Woodward K. Neary I. Rutherford C. 2013. Chronic
821	° - .	norovirus infection in a transplant patient successfully treated with enterally
822		administered immune globulin I Clin Virol
823	33	Sukhrie FH, Siehenga II, Beersma MF, Koopmans M, 2010, Chronic shedders
824	001	as reservoir for nosocomial transmission of norovirus I Clin Microbiol
825		48·4303-4305
826	34.	Kaufman SS, Chatteriee NK, Fuschino ME, Morse DL, Morotti RA, Magid MS,
827	0	Gondolesi GE Florman SS Fishbein TM 2005 Characteristics of human
828		calicivirus enteritis in intestinal transplant recipients. L'Pediatr Gastroenterol
829		Nutr 40.328-333
830	35	Siehenga II. Beersma MF. Vennema H. van Biezen P. Hartwig NI. Koonmans M.
831	001	2008. High prevalence of prolonged norovirus shedding and illness among
832		hospitalized patients: a model for in vivo molecular evolution. I Infect Dis
833		198:994-1001.
834	36.	Eden IS. Tanaka MM. Boni MF. Rawlinson WD. White PA. 2013.
835		Recombination within the pandemic norovirus GII.4 lineage. I Virol 87:6270-
836		6282.
837	37.	Cao S. Lou Z. Tan M. Chen Y. Liu Y. Zhang Z. Zhang XC. Jiang X. Li X. Rao Z.
838		2007. Structural basis for the recognition of blood group trisaccharides by
839		norovirus. J Virol 81:5949-5957.
840	38.	Baric RS, Yount B, Lindesmith L, Harrington PR, Greene SR, Tseng FC, Davis
841		N, Johnston RE, Klapper DG, Moe CL. 2002. Expression and self-assembly of
842		norwalk virus capsid protein from venezuelan equine encephalitis virus
843		replicons. J Virol 76:3023-3030.
844	39.	Barnett JL, Yang J, Cai Z, Zhang T, Wan XF. 2012. AntigenMap 3D: an online
845		antigenic cartography resource. Bioinformatics 28:1292-1293.
846	40.	Cai Z, Zhang T, Wan XF. 2010. A computational framework for influenza
847		antigenic cartography. PLoS Comput Biol 6:e1000949.
848	41.	Cannon JL, Lindesmith LC, Donaldson EF, Saxe L, Baric RS, Vinje J. 2009. Herd
849		immunity to GII.4 noroviruses is supported by outbreak patient sera. J Virol
850		83:5363-5374.
851	42.	Reeck A, Kavanagh O, Estes MK, Opekun AR, Gilger MA, Graham DY, Atmar
852		RL. 2010. Serological correlate of protection against norovirus-induced
853		gastroenteritis. J Infect Dis 202:1212-1218.
854	43.	Allen DJ, Adams NL, Aladin F, Harris JP, Brown DW. 2014. Emergence of the
855		GII-4 Norovirus Sydney2012 Strain in England, Winter 2012-2013. PLoS One
856		9:e88978.
857	44.	Roddie C, Paul JP, Benjamin R, Gallimore CI, Xerry J, Gray JJ, Peggs KS, Morris
858		EC, Thomson KJ, Ward KN. 2009. Allogeneic hematopoietic stem cell
859		transplantation and norovirus gastroenteritis: a previously unrecognized
860		cause of morbidity. Clin Infect Dis 49:1061-1068.

Q61	15	Class PL Parashar IID Estos MK 2009 Norovirus gastroontoritis N Engl I
001	45.	Glass Nr. Farasiar OD, Estes MR. 2009. Norovirus gastroenteritis. N Engr J
862		Med 361:1776-1785.
863	46.	Atmar RL, Opekun AR, Gilger MA, Estes MK, Crawford SE, Neill FH, Graham
864		DY. 2008. Norwalk virus shedding after experimental human infection.
865		Emerg Infect Dis 14:1553-1557.
866	47.	Etherington GJ, Ring SM, Charleston MA, Dicks J, Rayward-Smith VJ, Roberts
867		IN. 2006. Tracing the origin and co-phylogeny of the caliciviruses. J Gen Virol
868		87:1229-1235.
869	48.	Tan M, Xia M, Cao S, Huang P, Farkas T, Meller J, Hegde RS, Li X, Rao Z, Jiang X.
870		2008. Elucidation of strain-specific interaction of a GII-4 norovirus with
871		HBGA receptors by site-directed mutagenesis study. Virology 379:324-334.
872	49.	Bedford T, Suchard MA, Lemey P, Dudas G, Gregory V, Hay AJ, McCauley JW,
873		Russell CA, Smith DJ, Rambaut A. 2014. Integrating influenza antigenic
874		dynamics with molecular evolution. Elife 3:e01914.
875		•
876		

Table 1: Chronic Infection Strain HBGA Binding Preferences

VLPs representing GII.4-2006b, P.D1, and P.D302 were assayed for their ability to bind synthetic biotinylated HBGAs A, B, Le^a, Le^b, Le^x, Le^y, H type 1, and H type 3 by carbohydrate binding assay. Positive reactivity was defined as a value greater or equal to 3X the background binding value.

mAb	Epitope Targeted	Me	ean EC ₅₀ (Upper/Lower Lir	nit)
		GII.4-2006	P.D1	P.D302
GII.4-2006-G2	А	0.113 (0.130/0.098)	0.290* (0.357/0.235)	>1.00**
GII.4-2006-G3	A	0.097 (0.110/0.085)	0.127 (0.156/0.104)	>1.00**
GII.4-2006-G4	A	0.011 (0.013/0.008)	0.028* (0.045/0.017)	>1.00**
GII.4-2006-G6	А	0.024 (0.029/0.021)	0.052* (0.067/0.040)	0.201** (0.232/0.175
GII.4-2006-G7	A	0.021 (0.026/0.017)	0.02 (0.027/0.015)	>1.00**
NVB43.9	A	0.024 (0.026/0.022)	0.046* (0.051/0.041)	>1.00**
NVB111	A	0.147 (0.211/0.103)	>1.00*	>1.00*
NVB97	D	0.082 (0.131/0.052)	0.059 (0.084/0.041)	>1.00**
NVB71.4	conserved GII.4	0.151 (0.182/0.125)	0.129 (0.176/0.095)	0.13 (0.168/0.101)

Table 2: GII.4 Mouse and Human mAb EIA Reactivity with Chronic Infection Strains Mouse and human GII.4 monoclonal antibodies against were assayed for reactivity with GII.4-2006b, P.D1, and P.D302 VLPs by multiple dilution EIA. The mean percent binding (percent of the VLP bound to antibody in the dilution course compared to the amount of VLP bound with antibody at 1 ug/mL) of each VLP was fit with a sigmoidal curve, and the mean EC_{50} (µg/ml) EIA reactivity titers for GII.4-2006b, P.D1, and P.D302 were calculated. * Mean EC_{50} EIA reactivity titer for the test VLP is significantly different from the mean EC_{50} for GII.4-2006b (light grey), or ** was significantly different from both GII.4-2006b and P.D1 (p<0.05) (dark grey). Monoclonal antibodies that did not demonstrate EIA reactivity at or above OD450 nm 0.2 at 1 ug/mL with a particular VLP are denoted by an EC_{50} of >1 ug/mL. Statistics were calculated by Oneway ANOVA with Bonferroni post test.

