216 research outputs found

    Molecular cloning and sequence analysis of multiple cDNA variants for thyroid-stimulating hormone β subunit (TSHβ) in the fathead minnow \u3cem\u3e(Pimephales promelas)\u3c/em\u3e

    Get PDF
    We cloned and sequenced full-length cDNAs encoding the β subunit of thyroid-stimulating hormone (TSHβ) from the pituitary of fathead minnow (Piephales promelas)using 5\u27-and 3\u27-rapid amplification of cDNA ends (RACE). Three cDNA variants for TSHβ with lengths of 1184-, 1093-, and 818-bp were identified. The cDNA variant of 1184-bp included 453-bp of open-reading frame and 610-bp of 3\u27 UTR followed by a poly(A)site. This cDNA encodes 150 amino acids including a 19 residue signal peptide and a mature TSHβ protein of 131 residues with sequence identities of 97–53% to other fishes and 42–39% to mammals. The 1093-bp cDNA variant was identical to the 1184-bp variant in the open-reading frame, but contained a deletion of 40-bp in the 3\u27 UTR. The 818-bp cDNA variant, however, contained 498-bp of open-reading frame followed by 227-bp of 3\u27 UTR and a poly(A)site. The deduced amino acid sequence for this cDNA variant showed 99.2% homology with the 1184-and 1093-bp variants of TSHβ, but a single deletion of 332bp nucleotides spanning the predicted stop codon and 3\u27 UTR resulted in a deduced amino acid sequence with 15 additional residues on the C terminus. The presence of this 818-bp cDNA variant in the pituitary was further confirmed by PCR using primers developed to the 5\u27 and 3\u27 UTR. PCR and Southern blot analyses of genomic DNA suggested only one gene for TSHβ. Sequencing of this gene revealed a hairpin loop structure of approximately 300-bp located in the 3\u27 UTR and corresponding to the region of the 332-bp deletion in the 818-bp transcript

    Neural defects and cardiac arrhythmia in fish larvae following embryonic exposure to 2,2\u27,4,4\u27-tetrabromodiphenyl ether (PBDE 47)

    Get PDF
    Polybrominated diphenyl ethers (PBDEs) are added to plastics, polyurethane foam, and textiles as a flame retardant. While PBDEs play a key role in reducing loss of human life and property from fires, these flame retardants have become pervasive organic contaminants in the environment and in the tissues of fish, birds, marine mammals, and humans. Levels of PBDEs in wildlife and humans continue to rise, raising concerns about potential ecological and health risks associated with exposure to these chemicals. Nevertheless, there is little currently known about the toxicological effects of PBDE exposure. Here, we examined the developmental toxicity of the PBDE congener 2,2\u27,4,4\u27-tetrabromodiphenyl ether (PBDE 47) using the zebrafish (Danio rerio) as an ontogenetic model. Zebrafish embryos were exposed continuously to dissolved phase PBDE 47 (100–5000 μg/l) beginning 3–5 h post-fertilization (hpf). Fish treated with the highest concentrations of PBDE 47 delayed hatching, had reduced growth post-hatching, and displayed an abnormal dorsal curvature of the body with flexion at the hindbrain. By 96 h post-fertilization larvae exposed to PBDE 47 had significant tachycardia, which progressed into atrioventricular block arrhythmias. Microinjection of fluorescent dye into the hindbrain ventricle revealed that cerebrospinal fluid in the neural tube and brain ventricles flowed more slowly in fish larvae exposed to PBDE 47, a likely etiology for the dorsal curvature. Similar, though much less pronounced, developmental toxicity also occurred in larvae exposed to PBDE 47 only for a 20 h period during early embryogenesis (3–23 hpf), suggesting that PBDEs incorporated in lipid of the egg are bioavailable and cause toxicity later in life. Taken together, this work indicates that exposure to PBDE 47 can cause morphological abnormalities, impair cardiovascular function and cerebrospinal fluid flow, and provides a tractable starting point for using the zebrafish model to explore molecular mechanisms of PBDE toxicity

    The spatiotemporal expression of multiple coho salmon ovarian connexin genes and their hormonal regulation in vitro during oogenesis

    Get PDF
    BACKGROUND: Throughout oogenesis, cell-cell communication via gap junctions (GJs) between oocytes and surrounding follicle cells (theca and granulosa cells), and/or amongst follicle cells is required for successful follicular development. To gain a fundamental understanding of ovarian GJs in teleosts, gene transcripts encoding GJ proteins, connexins (cx), were identified in the coho salmon, Oncorhynchus kisutch, ovary. The spatiotemporal expression of four ovarian cx transcripts was assessed, as well as their potential regulation by follicle-stimulating hormone (FSH), luteinizing hormone (LH) and insulin-like growth factor 1 (IGF1). METHODS: Salmonid ovarian transcriptomes were mined for cx genes. Four gene transcripts designated cx30.9, cx34.3, cx43.2, and cx44.9 were identified. Changes in gene expression across major stages of oogenesis were determined with real-time, quantitative RT-PCR (qPCR) and cx transcripts were localized to specific ovary cell-types by in situ hybridization. Further, salmon ovarian follicles were cultured with various concentrations of FSH, LH and IGF1 and effects of each hormone on cx gene expression were determined by qPCR. RESULTS: Transcripts for cx30.9 and cx44.9 were highly expressed at the perinucleolus (PN)-stage and decreased thereafter. In contrast, transcripts for cx34.3 and cx43.2 were low at the PN-stage and increased during later stages of oogenesis, peaking at the mid vitellogenic (VIT)-stage and maturing (MAT)-stage, respectively. In situ hybridization revealed that transcripts for cx34.3 were only detected in granulosa cells, but other cx transcripts were detected in both oocytes and follicle cells. Transcripts for cx30.9 and cx44.9 were down-regulated by FSH and IGF1 at the lipid droplet (LD)-stage, whereas transcripts for cx34.3 were up-regulated by FSH and IGF1 at the LD-stage, and LH and IGF1 at the late VIT-stage. Transcripts for cx43.2 were down-regulated by IGF1 at the late VIT-stage and showed no response to gonadotropins. CONCLUSION: Our findings demonstrate the presence and hormonal regulation of four different cx transcripts in the salmon ovary. Differences in the spatiotemporal expression profile and hormonal regulation of these cx transcripts likely relate to their different roles during ovarian follicle differentiation and development

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Testing assumptions for endophenotype studies in ADHD: Reliability and validity of tasks in a general population sample

    Get PDF
    BACKGROUND: Advances in both genetic and cognitive-experimental studies on attention deficit hyperactivity disorder (ADHD) have opened new opportunities for cognitive endophenotype research. In such genetic designs the focus is on individual differences in characteristics, associated with ADHD, that can be measured reliably over time. Genetic studies that take a 'quantitative trait loci' approach hypothesise that multiple susceptibility genes contribute to a continuous dimension of ADHD symptoms. As an important initial step, we aimed to investigate the underlying assumptions that (1) key cognitive-experimental tasks indicate adequate test-retest reliability and (2) ADHD symptom scores in a general population sample are associated with performance on these tasks. METHODS: Forty-nine children were assessed on a go/no-go task and a reaction time task (the 'fast task') that included manipulations with event rate and incentives. The children were assessed twice, with a test-retest interval of two weeks. RESULTS: The majority of the task variables demonstrated moderate-to-good test-retest reliability. The correlations between teacher ratings of ADHD symptoms and key task variables were .4–.6: ADHD symptoms were associated with poor performance (especially high reaction time variability) in a slow baseline condition, whereas there was low or no association in conditions with a faster event rate or incentives. In contrast, no clear pattern of findings emerged based on parent ratings of ADHD symptoms. CONCLUSION: The data support the usefulness of the go/no-go and fast tasks for genetic studies, which require reliable and valid indices of individual differences. The overall pattern of associations between teacher ratings of ADHD symptoms and task variables is consistent with effects of event rate and incentives on performance, as predicted by the model of activation and arousal regulation. The lack of a clear pattern of findings with parent ratings of ADHD symptoms warrants further study
    • …
    corecore