12,765 research outputs found

    Bedrock geology of the northern Columbia Plateau and adjacent areas

    Get PDF
    The Columbia Plateau is surrounded by a complex assemblage of highly deformed Precambrian to lower Tertiary continental and oceanic rocks that reflects numerous episodes of continental accretion. The plateau itself is comprised of the Columbia River basalt group formed between about 16.5 x 1 million years B.P. and 6 x 1 million years B.P. Eruptions were infrequent between about 14 and 6 x 1 million years B.P., allowing time for erosion and deformation between successive outpourings. The present-day courses of much of the Snake River, and parts of the Columbia River, across the plateau date from this time. Basalt produced during this waning activity is more heterogeneous chemically and isotopically than older flows, reflecting its prolonged period of volcanism

    Investigations of electron emission characteristics of low work function surfaces Quarterly report no. 5, 1 Oct. - 31 Dec. 1965

    Get PDF
    Electron emission characteristics of low work function surfaces from magnetic deflection probe measurements of cesium adsorption on tungste

    Investigations of electron emission characteristics of low work function surfaces Quarterly report, 28 Sep. - 27 Dec. 1966

    Get PDF
    Coadsorption of cesium and fluorine on tungsten, and analysis of mechanisms leading to decay of field emission current from low work function zirconium/oxygen coated tungsten emitte

    Effect of emerging technology on a convertible, business/interceptor, supersonic-cruise jet

    Get PDF
    This study was initiated to assess the feasibility of an eight-passenger, supersonic-cruise long range business jet aircraft that could be converted into a military missile carrying interceptor. The baseline passenger version has a flight crew of two with cabin space for four rows of two passenger seats plus baggage and lavatory room in the aft cabin. The ramp weight is 61,600 pounds with an internal fuel capacity of 30,904 pounds. Utilizing an improved version of a current technology low-bypass ratio turbofan engine, range is 3,622 nautical miles at Mach 2.0 cruise and standard day operating conditions. Balanced field takeoff distance is 6,600 feet and landing distance is 5,170 feet at 44,737 pounds. The passenger section from aft of the flight crew station to the aft pressure bulkhead in the cabin was modified for the interceptor version. Bomb bay type doors were added and volume is sufficient for four advanced air-to-air missiles mounted on a rotary launcher. Missile volume was based on a Phoenix type missile with a weight of 910 pounds per missile for a total payload weight of 3,640 pounds. Structural and equipment weights were adjusted and result in a ramp weight of 63,246 pounds with a fuel load of 30,938 pounds. Based on a typical intercept mission flight profile, the resulting radius is 1,609 nautical miles at a cruise Mach number of 2.0

    Application of near-term technology to a Mach 2.0 variable-sweep-wing, supersonic-cruise executive jet

    Get PDF
    The impact of variable sweep wing technology with relaxed static stability requirements on a supersonic-cruise executive jet with transatlantic range was assessed. The baseline vehicle utilized modified, current-technology engines and titanium structures produced with superplastic forming and diffusion bonding; this vehicle meets study requirements for both supersonic-cruise and low-speed characteristics. The baseline concept has a ramp weight of 64,500 pounds with a crew of two and eight passengers. Its Mach 2.0 cruise range is nearly 3,500 nautical miles; its Mach 0.9 cruise range is over 5,000 nautical miles. Takeoff, landing, and balanced field length requirements were calculated for a composite variant and are all less than 5,000 feet

    Volume 2 - Literature review of adsorption on metal surfaces Final report, 1 May 1966 - 2 Jul. 1967

    Get PDF
    Atom and ion desorption energy, chemisorption theory and surface bonds, work functions and potential energy in literature review of adsorption on metal surface

    Ractopamine HCl improved cardiac hypertrophy but not poor growth, metabolic inefficiency, or greater white blood cells associated with heat stress in concentrate-fed lambs

    Get PDF
    Heat stress decreases livestock performance and well-being (Hahn, 1999; Nienaber and Hahn, 2007), causes metabolic dysfunction that decreases growth efficiency (O’Brien et al., 2010), and alters cardiovascular function (Crandall et al., 2008). Each year, heat stress costs the livestock industry up to $2.5 billion (St-Pierre et al., 2003). Ractopamine HCl acts as a nutrient repartitioning agent (Beermann, 2002); classified as a β adrenergic agonist (βAA), it shares pharmacological properties with adrenaline (Beermann, 2002). βAA increase muscle mass and decreases fat deposition through unknown mechanisms (Beermann, 2002). In feedlot cattle, they increase growth efficiency and improve carcass yield and merit (Scramlin et al., 2010; Buntyn et al., 2017), which increases profit and allows more meat to be produced from fewer animals. However, because βAA act via a stress system, it is unclear how the products affect animals under stress conditions. β1AA and β2AA can also cause tachycardia, heart palpitations, and arrhythmias (Sears, 2002). We hypothesize that β1AA combined with heat stress may overstimulate the adrenergic system, resulting is metabolic dysfunction and decreased performance. Sheep are a common model for cattle, and thus, the objective of this study was to determine the impact of ractopamine HCl on health and cardiovascular parameters, growth, and metabolic efficiency in feeder lambs
    corecore