13,057 research outputs found

    Visualization of hydrogen injection in a scramjet engine by simultaneous PLIF imaging and laser holographic imaging

    Get PDF
    Flowfield characterization has been accomplished for several fuel injector configurations using simultaneous planar laser induced fluorescence (PLIF) and laser holographic imaging (LHI). The experiments were carried out in the GASL-NASA HYPULSE real gas expansion tube facility, a pulsed facility with steady test times of about 350 microsec. The tests were done at simulated Mach numbers 13.5 and 17. The focus of this paper is on the measurement technologies used and their application in a research facility. The HYPULSE facility, the models used for the experiments, and the setup for the LHI and PLIF measurements are described. Measurement challenges and solutions are discussed. Results are presented for experiments with several fuel injector configurations and several equivalence ratios

    A prospective longitudinal study of perceived infant outcomes at 18-24 months: Neural and psychological correlates of parental thoughts and actions assessed during the first month postpartum

    Get PDF
    The first postpartum months constitute a critical period for parents to establish an emotional bond with their infants. Neural responses to infant-related stimuli have been associated with parental sensitivity. However, the associations among these neural responses, parenting, and later infant outcomes for mothers and fathers are unknown. In the current longitudinal study, we investigated the relationships between parental thoughts/actions and neural activation in mothers and fathers in the neonatal period with infant outcomes at the toddler stage. At the first month postpartum, mothers (n=21) and fathers (n=19) underwent a neuroimaging session during which they listened to their own and unfamiliar baby’s cry. Parenting-related thoughts/behaviors were assessed by interview twice at the first month and 3-4 months postpartum and infants’ socioemotional outcomes were reported by mothers and fathers at 18-24 months postpartum. In mothers, higher levels of anxious thoughts/actions about parenting at the first month postpartum, but not at 3-4 months postpartum, were associated with infant’s low socioemotional competencies at 18-24 months. Anxious thoughts/actions were also associated with heightened responses in the motor cortex and reduced responses in the substantia nigra to own infant cry sounds. On the other hand, in fathers, higher levels of positive perception of being a parent at the first month postpartum, but not at 3-4 months postpartum, were associated with higher infant socioemotional competencies at 18-24 months. Positive thoughts were associated with heightened responses in the auditory cortex and caudate to own infant cry sounds. The current study provides evidence that parental thoughts are related to concurrent neural responses to their infants at the first month postpartum as well as their infant’s future socioemotional outcome at 18-24 months. Parent differences suggest that anxious thoughts in mothers and positive thoughts in fathers may be the targets for parenting-focused interventions very early postpartum

    An eco‐epidemiological modeling approach to investigate dilution effect in two different tick‐borne pathosystems

    Get PDF
    Disease (re)emergence appears to be driven by biodiversity decline and environmental change. As a result, it is increasingly important to study host-pathogen interactions within the context of their ecology and evolution. The dilution effect is the concept that higher biodiversity decreases pathogen transmission. It has been observed especially in zoonotic vector-borne pathosystems, yet evidence against it has been found. In particular, it is still debated how the community (dis)assembly assumptions and the degree of generalism of vectors and pathogens affect the direction of the biodiversity-pathogen transmission relationship. The aim of this study was to use empirical data and mechanistic models to investigate dilution mechanisms in two rodent-tick-pathogen systems differing in their vector degree of generalism. A community was assembled to include ecological interactions that expand from purely additive to purely substitutive. Such systems are excellent candidates to analyze the link between vector ecology, community (dis)assembly dynamics, and pathogen transmission. To base our mechanistic models on empirical data, rodent live-trapping, including tick sampling, was conducted in Wales across two seasons for three consecutive years. We have developed a deterministic single-vector, multi-host compartmental model that includes ecological relationships with non-host species, uniquely integrating theoretical and observational approaches. To describe pathogen transmission across a gradient of community diversity, the model was populated with parameters describing five different scenarios differing in ecological complexity; each based around one of the pathosystems: Ixodes ricinus (generalist tick) - Borrelia burgdorferi and I. trianguliceps (small mammals specialist tick) - Babesia microti. The results suggested that community composition and inter-specific dynamics affected pathogen transmission with different dilution outcomes depending on the vector degree of generalism. The model provides evidence that dilution and amplification effects are not mutually exclusive in the same community, but depend on vector ecology and the epidemiological output considered (i.e. the “risk” of interest). In our scenarios, more functionally diverse communities resulted in fewer infectious rodents, supporting the dilution effect. In the pathosystem with generalist vector we identified a hump shaped relationship between diversity and infections in hosts, while for that characterized by specialist tick, this relationship was more complex and more dependent upon specific parameter values

    High-Calcium Limestone Deposits of Cumberland Valley, Pennsylvania

    Get PDF
    Author Institution: University of Minnesota, Minneapolis, MinnesotaHigh-calcium limestones occur in the upper part of the New Market Formation, of Lower Middle Ordovician age, in Franklin and Cumberland Counties, Pennsylvania. The high-calcium facies of the New Market Formation is represented by sublithographic limestone or vaughanite, which probably formed in quiet water, low-energy environments such as intershoal lagoons, or in protected bays similar to the present-day Florida Bay environment. Rapid facies changes are characteristic of the strata. The better grade of stone lies in the upper 100 to 125 feet of the New Market Formation and averages 95-97% calcium carbonate. Silica and magnesia are about equal in amount as impurities. One high-calcium belt extends from the Maryland state line through Chambersburg and Newville to beyond Carlisle. The strata in this belt are structurally complex, which requires careful field study and core-drilling prior to exploitation. Stone suitable for blast-furnace flux is present in relatively large amounts, but stone for open-hearth use or portland cement requires more selective quarrying

    Excitations in time-dependent density-functional theory

    Full text link
    An approximate solution to the time-dependent density functional theory (TDDFT) response equations for finite systems is developed, yielding corrections to the single-pole approximation. These explain why allowed Kohn-Sham transition frequencies and oscillator strengths are usually good approximations to the true values, and why sometimes they are not. The approximation yields simple expressions for G\"orling-Levy perturbation theory results, and a method for estimating expectation values of the unknown exchange-correlation kernel.Comment: 4 pages, 1 tabl

    Optimal squeezing, pure states, and amplification of squeezing in resonance fluorescence

    Get PDF
    It is shown that 100% squeezed output can be produced in the resonance fluorescence from a coherently driven two-level atom interacting with a squeezed vacuum. This is only possible for N=1/8N=1/8 squeezed input, and is associated with a pure atomic state, i.e., a completely polarized state. The quadrature for which optimal squeezing occurs depends on the squeezing phase Φ,\Phi , the Rabi frequency Ω,\Omega , and the atomic detuning Δ\Delta . Pure states are described for arbitrary Φ,\Phi , not just Φ=0\Phi =0 or π\pi as in previous work. For small values of N,N, there may be a greater degree of squeezing in the output field than the input - i.e., we have squeezing amplification.Comment: 6 pages & 7 figures, Submitted to Phys. Rev.

    Quantum interference in optical fields and atomic radiation

    Full text link
    We discuss the connection between quantum interference effects in optical beams and radiation fields emitted from atomic systems. We illustrate this connection by a study of the first- and second-order correlation functions of optical fields and atomic dipole moments. We explore the role of correlations between the emitting systems and present examples of practical methods to implement two systems with non-orthogonal dipole moments. We also derive general conditions for quantum interference in a two-atom system and for a control of spontaneous emission. The relation between population trapping and dark states is also discussed. Moreover, we present quantum dressed-atom models of cancellation of spontaneous emission, amplification on dark transitions, fluorescence quenching and coherent population trapping.Comment: To be published in Journal of Modern Optics Special Issue on Quantum Interferenc

    Time evolution of the Rabi Hamiltonian from the unexcited vacuum

    Full text link
    The Rabi Hamiltonian describes a single mode of electromagnetic radiation interacting with a two-level atom. Using the coupled cluster method, we investigate the time evolution of this system from an initially empty field mode and an unexcited atom. We give results for the atomic inversion and field occupation, and find that the virtual processes cause the field to be squeezed. No anti-bunching occurs.Comment: 25 pages, 8 figures, RevTe

    Exploring the inner region of Type 1 AGNs with the Keck interferometer

    Full text link
    The exploration of extragalactic objects with long-baseline interferometers in the near-infrared has been very limited. Here we report successful observations with the Keck interferometer at K-band (2.2 um) for four Type 1 AGNs, namely NGC4151, Mrk231, NGC4051, and the QSO IRAS13349+2438 at z=0.108. For the latter three objects, these are the first long-baseline interferometric measurements in the infrared. We detect high visibilities (V^2 ~ 0.8-0.9) for all the four objects, including NGC4151 for which we confirm the high V^2 level measured by Swain et al.(2003). We marginally detect a decrease of V^2 with increasing baseline lengths for NGC4151, although over a very limited range, where the decrease and absolute V^2 are well fitted with a ring model of radius 0.45+/-0.04 mas (0.039+/-0.003 pc). Strikingly, this matches independent radius measurements from optical--infrared reverberations that are thought to be probing the dust sublimation radius. We also show that the effective radius of the other objects, obtained from the same ring model, is either roughly equal to or slightly larger than the reverberation radius as a function of AGN luminosity. This suggests that we are indeed partially resolving the dust sublimation region. The ratio of the effective ring radius to the reverberation radius might also give us an approximate probe for the radial structure of the inner accreting material in each object. This should be scrutinized with further observations.Comment: accepted for publication in A&A Letter

    The Implications of M Dwarf Flares on the Detection and Characterization of Exoplanets at Infrared Wavelengths

    Full text link
    We present the results of an observational campaign which obtained high time cadence, high precision, simultaneous optical and IR photometric observations of three M dwarf flare stars for 47 hours. The campaign was designed to characterize the behavior of energetic flare events, which routinely occur on M dwarfs, at IR wavelengths to milli-magnitude precision, and quantify to what extent such events might influence current and future efforts to detect and characterize extrasolar planets surrounding these stars. We detected and characterized four highly energetic optical flares having U-band total energies of ~7.8x10^30 to ~1.3x10^32 ergs, and found no corresponding response in the J, H, or Ks bandpasses at the precision of our data. For active dM3e stars, we find that a ~1.3x10^32 erg U-band flare (delta Umax ~1.5 mag) will induce <8.3 (J), <8.5 (H), and <11.7 (Ks) milli-mags of a response. A flare of this energy or greater should occur less than once per 18 hours. For active dM4.5e stars, we find that a ~5.1x10^31 erg U-band flare (delta Umax ~1.6 mag) will induce <7.8 (J), <8.8 (H), and <5.1 (Ks) milli-mags of a response. A flare of this energy or greater should occur less than once per 10 hours. No evidence of stellar variability not associated with discrete flare events was observed at the level of ~3.9 milli-mags over 1 hour time-scales and at the level of ~5.6 milli-mags over 7.5 hour time-scales. We therefore demonstrate that most M dwarf stellar activity and flares will not influence IR detection and characterization studies of M dwarf exoplanets above the level of ~5-11 milli-mags, depending on the filter and spectral type. We speculate that the most energetic megaflares on M dwarfs, which occur at rates of once per month, are likely to be easily detected in IR observations with sensitivity of tens of milli-mags.Comment: Accepted in Astronomical Journal, 17 pages, 6 figure
    corecore