143 research outputs found

    The human Rad54 recombinational DNA repair protein is a double-stranded DNA-dependent ATPase

    Get PDF

    Proteomic Analysis of Human Osteoblastic Cells: Relevant Proteins and Functional Categories for Differentiation

    Get PDF
    Osteoblasts are the bone forming cells, capable of secreting an extracellular matrix with mineralization potential. The exact mechanism by which osteoblasts differentiate and form a mineralized extracellular matrix is presently not fully understood. To increase our knowledge about this process, we conducted proteomics analysis in human immortalized preosteoblasts (SV-HFO) able to differentiate and mineralize. We identified 381 proteins expressed during the time course of osteoblast differentiation. Gene ontology analysis revealed an overrepresentation of protein categories established as important players for osteoblast differentiation, bone formation, and mineralization such as pyrophosphatases. Proteins involved in antigen presentation, energy metabolism and cytoskeleton rearrangement constitute other overrepresented processes, whose function, albeit interesting, is not fully understood in the context of osteoblast differentiation and bone formation. Correlation analysis, based on quantitative data, revealed a biphasic osteoblast differentiation, encompassing a premineralization and a mineralization period. Identified differentially expressed proteins between mineralized and nonmineralized cells include cytoskeleton (e.g., CCT2, PLEC1, and FLNA) and extracellular matrix constituents (FN1, ANXA2, and LGALS1) among others. FT-ICR-MS data obtained for FN1, ANXA2, and LMNA shows a specific regulation of these proteins during the different phases of osteoblast differentiation. Taken together, this study increases our understanding of the proteomics changes that accompany osteoblast differentiation and may permit the discovery of novel modulators of bone formation

    Proteomic Analysis of Human Osteoblastic Cells: Relevant Proteins and Functional Categories for Differentiation

    Get PDF
    Abstract Osteoblasts are the bone forming cells, capable of secreting an extracellular matrix with mineralization potential. The exact mechanism by which osteoblasts differentiate and form a mineralized extracellular matrix is presently not fully understood. To increase our knowledge about this process, we conducted proteomics analysis in human immortalized preosteoblasts (SV-HFO) able to differentiate and mineralize. We identified 381 proteins expressed during the time course of osteoblast differentiation. Gene ontology analysis revealed an overrepresentation of protein categories established as important players for osteoblast differentiation, bone formation, and mineralization such as pyrophosphatases. Proteins involved in antigen presentation, energy metabolism and cytoskeleton rearrangement constitute other overrepresented processes, whose function, albeit interesting, is not fully understood in the context of osteoblast differentiation and bone formation. Correlation analysis, based on quantitative data, revealed a biphasic osteoblast differentiation, encompassing a premineralization and a mineralization period. Identified differentially expressed proteins between mineralized and nonmineralized cells include cytoskeleton (e.g., CCT2, PLEC1, and FLNA) and extracellular matrix constituents (FN1, ANXA2, and LGALS1) among others. FT-ICR-MS data obtained for FN1, ANXA2, and LMNA shows a specific regulation of these proteins during the different phases of osteoblast differentiation. Taken together, this study increases our understanding of the proteomics changes that accompany osteoblast differentiation and may permit the discovery of novel modulators of bone formation

    The BCL-2 inhibitor obatoclax overcomes resistance to histone deacetylase inhibitors SAHA and LBH589 as radiosensitizers in patient-derived glioblastoma stem-like cells

    Get PDF
    Glioblastoma has shown resistance to histone deacetylase inhibitors (HDACi) as radiosensitizers in cultures with Bcl-XL over-expression. We study the efficacy of SAHA/RTx and LBH589/RTx when manipulating Bcl-2 family proteins using the Bcl-2 inhibitor Obatoclax in patient-derived glioblastoma stem-like cell (GSC) cultures. GSC cultures in general have a deletion in phosphatase and tensin homolog (PTEN). Synergy was determined by the Chou Talalay method. The effects on apoptosis and autophagy were studied by measuring caspase-3/7, Bcl-XL, Mcl-1 and LC3BI/II proteins. The relation between treatment response and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status, recurrence and gene expression levels of the tumors were studied. Obatoclax synergized with SAHA and LBH589 and sensitized cells to HDACi/RTx. Over 50% of GSC cultures were responsive to Obatoclax with either single agent. Combined with HDACi/RTx treatment, Obatoclax increased caspase-3/7 and inhibited Bcl-2 family proteins Bcl-XL and Mcl-1 more effectively than other treatments. Genes predictive for treatment response were identified, including the F-box/WD repeat-containing protein-7, which was previously related to Bcl-2 inhibition and HDACi sensitivity. We emphasize the functional relation between Bcl-2 proteins and radiosensitization by HDACi and provide a target for increasing responsiveness in glioblastoma by using the Bcl-2 inhibitor Obatoclax

    Mesenchymal stromal cells and vascular morphogenesis: gene expression profiles and promoting pathways

    Get PDF
    Objective: Hematopoietic cells and mesenchymal stromal cells are closely related to endothelial cells in theembryological cell differentiation lineages. To study the pathobiology of vascular immunology and microenvironmentin vascular morphogenesis, we analyzed the genetic factors known to be involved in vascular anomalies in humansand mice in the expression data from the Immunological Genome Project (ImmGen).Methods: We mined the Pictures of Standard Syndromes of Undiagnosed Malformations and NCBI OnlineMendelian Inheritance in Man databases to construct a gene list related to vasculature. We studied the expressionsignatures of these genes in the ImmGen database. Hierarchical clustering analyses were performed using PartekยฎGenomics Suite 6.6. Next, the acquired clusters were separately investigated within Ingenuity Pathway Analysis(IPA). Based on these results we performed a Principal Component Analysis (PCA) with pericyte samples from aseparate database to investigate the relation with pericytes.Results: Our database queries resulted in a gene list of 438 genes related to vasculature, of which 384 could bestudied within the ImmGen data set. Through hierarchical clustering we identified five distinct clusters of whichone was specific for expression in mesenchymal cell lines. Next, using IPA we found various pathways related topericyte functions. A subsequent PCA with pericyte samples showed a close resemblance to specific stromal cells ofmesenchymal origin indicating shared expression profiles for vascular genes between pericytes and these cell types.These results indicate that the processes of Epithelial-Mesenchymal-Transition and or Endothelial-MesenchymalTransition underly the interaction between epithelial/endothelial cells and mesenchymal stromal cells in vascularmorphogenesis.Conclusion: In this data analysis study, we performed data fusion from various sources that may aid futuremechanistic and therapeutic studies in study design and cell type selection as well as provide a potential strategyto find therapeutic targets based on the specific pathological molecular mechanisms related to vascular anomalies

    Functional Gene-Expression Analysis Shows Involvement of Schizophrenia-Relevant Pathways in Patients with 22q11 Deletion Syndrome

    Get PDF
    22q11 Deletion Syndrome (22q11DS) is associated with dysmorphology and a high prevalence of schizophrenia-like symptoms. Several genes located on chromosome 22q11 have been linked to schizophrenia. The deletion is thought to disrupt the expression of multiple genes involved in maturation and development of neurons and neuronal circuits, and neurotransmission. We investigated whole-genome gene expression of Peripheral Blood Mononuclear Cells (PBMC's) of 8 22q11DS patients and 8 age- and gender-matched controls, to (1) investigate the expression levels of 22q11 genes and (2) to investigate whether 22q11 genes participate in functional genetic networks relevant to schizophrenia. Functional relationships between genes differentially expressed in patients (as identified by Locally Adaptive Statistical procedure (LAP) or satisfying p<0.05 and fold-change >1.5) were investigated with the Ingenuity Pathways Analysis (IPA). 14 samples (7 patients, 7 controls) passed quality controls. LAP identified 29 deregulated genes. Pathway analysis showed 262 transcripts differentially expressed between patients and controls. Functional pathways most disturbed were cell death, cell morphology, cellular assembly and organization, and cell-to-cell signaling. In addition, 10 canonical pathways were identified, among which the signal pathways for Natural Killer-cells, neurotrophin/Trk, neuregulin, axonal guidance, and Huntington's disease. Our findings support the use of 22q11DS as a research model for schizophrenia. We identified decreased expression of several genes (among which COMT, Ufd1L, PCQAP, and GNB1L) previously linked to schizophrenia as well as involvement of signaling pathways relevant to schizophrenia, of which Neurotrophin/Trk and neuregulin signaling seems to be especially notable

    Precursor lesions of vulvar squamous cell carcinoma โ€“ histology and biomarkers: A systematic review

    Get PDF
    The precursor lesion of vulvar squamous cell carcinoma (VSCC), namely vulvar intraepithelial neoplasia (VIN), is classified as: human papillomavirus (HPV)-related high grade squamous intraepithelial lesion (HSIL), and HPV-independent differentiated VIN (dVIN). Traditionally, histology and immunohistochemistry (IHC) have been the basis of diagnosis and classification of VIN. HSIL shows conspicuous histological atypia, and positivity on p16-IHC, whereas dVIN shows less obvious histological atypia, and overexpression or null-pattern on p53-IHC. For both types of VIN, other diagnostic immunohistochemical markers have also been evaluated. Molecular characterization of VIN has been attempted in few recent studies, and novel genotypic subtypes of HPV-independent VSCC and VIN have been identified. This systematic review appraises the VSCC precursors identified so far, focusing on histology and biomarkers (immunohistochemical and molecular). To gain further insights into the carcinogenesis and to identify additional potential biomarkers, gene expression omnibus (GEO) datasets on VSCC were analyzed; the results are presented
    • โ€ฆ
    corecore