7 research outputs found

    Advanced 3D Imaging and Transcatheter Valve Repair/Implantation

    No full text

    Variable impact on mortality of AIDS-defining events diagnosed during combination antiretroviral therapy: not all AIDS-defining conditions are created equal.

    No full text
    Abstract Background—The extent to which mortality differs following individual acquired immunodeficiency syndrome (AIDS)–defining events (ADEs) has not been assessed among patients initiating combination antiretroviral therapy. Methods—We analyzed data from 31,620 patients with no prior ADEs who started combination antiretroviral therapy. Cox proportional hazards models were used to estimate mortality hazard ratios for each ADE that occurred in >50 patients, after stratification by cohort and adjustment for sex, HIV transmission group, number of anti-retroviral drugs initiated, regimen, age, date of starting combination antiretroviral therapy, and CD4+ cell count and HIV RNA load at initiation of combination antiretroviral therapy. ADEs that occurred in <50 patients were grouped together to form a “rare ADEs” category. Results—During a median follow-up period of 43 months (interquartile range, 19–70 months), 2880 ADEs were diagnosed in 2262 patients; 1146 patients died. The most common ADEs were esophageal candidiasis (in 360 patients), Pneumocystis jiroveci pneumonia (320 patients), and Kaposi sarcoma (308 patients). The greatest mortality hazard ratio was associated with non- Hodgkin’s lymphoma (hazard ratio, 17.59; 95% confidence interval, 13.84–22.35) and progressive multifocal leukoencephalopathy (hazard ratio, 10.0; 95% confidence interval, 6.70–14.92). Three groups of ADEs were identified on the basis of the ranked hazard ratios with bootstrapped confidence intervals: severe (non-Hodgkin’s lymphoma and progressive multifocal leukoencephalopathy [hazard ratio, 7.26; 95% confidence interval, 5.55–9.48]), moderate (cryptococcosis, cerebral toxoplasmosis, AIDS dementia complex, disseminated Mycobacterium avium complex, and rare ADEs [hazard ratio, 2.35; 95% confidence interval, 1.76–3.13]), and mild (all other ADEs [hazard ratio, 1.47; 95% confidence interval, 1.08–2.00]). Conclusions—In the combination antiretroviral therapy era, mortality rates subsequent to an ADE depend on the specific diagnosis. The proposed classification of ADEs may be useful in clinical end point trials, prognostic studies, and patient management

    Variable impact on mortality of AIDS-defining events diagnosed during combination antiretroviral therapy: not all AIDS-defining conditions are created equal

    No full text
    Abstract Background—The extent to which mortality differs following individual acquired immunodeficiency syndrome (AIDS)–defining events (ADEs) has not been assessed among patients initiating combination antiretroviral therapy. Methods—We analyzed data from 31,620 patients with no prior ADEs who started combination antiretroviral therapy. Cox proportional hazards models were used to estimate mortality hazard ratios for each ADE that occurred in >50 patients, after stratification by cohort and adjustment for sex, HIV transmission group, number of anti-retroviral drugs initiated, regimen, age, date of starting combination antiretroviral therapy, and CD4+ cell count and HIV RNA load at initiation of combination antiretroviral therapy. ADEs that occurred in <50 patients were grouped together to form a “rare ADEs” category. Results—During a median follow-up period of 43 months (interquartile range, 19–70 months), 2880 ADEs were diagnosed in 2262 patients; 1146 patients died. The most common ADEs were esophageal candidiasis (in 360 patients), Pneumocystis jiroveci pneumonia (320 patients), and Kaposi sarcoma (308 patients). The greatest mortality hazard ratio was associated with non- Hodgkin’s lymphoma (hazard ratio, 17.59; 95% confidence interval, 13.84–22.35) and progressive multifocal leukoencephalopathy (hazard ratio, 10.0; 95% confidence interval, 6.70–14.92). Three groups of ADEs were identified on the basis of the ranked hazard ratios with bootstrapped confidence intervals: severe (non-Hodgkin’s lymphoma and progressive multifocal leukoencephalopathy [hazard ratio, 7.26; 95% confidence interval, 5.55–9.48]), moderate (cryptococcosis, cerebral toxoplasmosis, AIDS dementia complex, disseminated Mycobacterium avium complex, and rare ADEs [hazard ratio, 2.35; 95% confidence interval, 1.76–3.13]), and mild (all other ADEs [hazard ratio, 1.47; 95% confidence interval, 1.08–2.00]). Conclusions—In the combination antiretroviral therapy era, mortality rates subsequent to an ADE depend on the specific diagnosis. The proposed classification of ADEs may be useful in clinical end point trials, prognostic studies, and patient management

    Does short-term virologic failure translate to clinical events in antiretroviral-naïve patients initiating antiretroviral therapy in clinical practice?

    No full text

    Predictors of trend in CD4-positive T-cell count and mortality among HIV-1-infected individuals with virological failure to all three antiretroviral-drug classes

    No full text
    Background Treatment strategies for patients in whom HIV replication is not suppressed after exposure to several drug classes remain unclear. We aimed to assess the inter-relations between viral load, CD4-cell count, and clinical outcome in patients who had experienced three-class virological failure. Methods We undertook collaborative joint analysis of 13 HIV cohorts from Europe, North America, and Australia, involving patients who had had three-class virological failure (viral load &gt;1000 copies per mL for &gt;4 months). Regression analyses were used to quantify the associations between CD4-cell-count slope, HIV-1 RNA concentration, treatment information, and demographic characteristics. Predictors of death were analysed by Cox's proportional-hazards models. Findings 2488 patients were included. 2118 (85%) had started antiretroviral therapy with single or dual therapy. During 5015 person-years of follow-up, 276 patients died (mortality rate 5.5 per 100 person-years; 3-year mortality risk 15.3% (95% Cl 13.5-17.3). Risk of death was strongly influenced by the latest CD4-cell count with a relative hazard of 15.8 (95% CI 9.28-27.0) for counts below 50 cells per muL versus above 200 cells per muL. The latest viral load did not independently predict death. For any given viral load, patients on treatment had more favourable CD4-cell-count slopes than those off treatment. For patients on treatment and with stable viral load, CD4-cell counts tended to be increasing at times when the current viral load was below 10 000 copies per mL or 1.5 log(10) copies per mL below off-treatment values. Interpretation In patients for whom viral-load suppression to below the level of detection is not possible, achievement and maintenance of a CD4-cell count above 200 per muL becomes the primary aim. Treatment regimens that maintain the viral load below 10 000 copies per mL or at least provide 1.5 log(10) copies per mL suppression below the off-treatment value do not seem to be associated with appreciable CD4-cell-count decline

    Predictors of trend in CD4-positive T-cell count and mortality among HIV-1-infected individuals with virological failure to all three antiretroviral-drug classes

    No full text
    corecore