3,024 research outputs found
Coloured mulch as a weed control technology and yield booster for summer savory
An investigation into the effect of coloured mulch technology as a technique to control weeds when growing the essential oil plant, summer savory (Satureja hortensis) was made. As well as weed control, the effects on the production of crop biomass and essential oil content and quality were also considered. The mulch treatments produced significantly more biomass than either of the control treatments (which used no mulch either with or without herbicide). The white mulch treatment produced the greatest biomass, closely followed by the red mulch treatment. The blue mulch treatment was third in ranking, although not significantly greater than the black mulch. Estimates of the quantity of essential oil produced by each treatment followed a similar trend to that shown by biomass production
A model for liquid phase sintering
AbstractA quantitative model for liquid phase sintering is developed based on the following ideas. During heating a liquid phase forms, which is easily mobile, wets the solid particles completely, dissolves solid atoms and provides an easy diffusion path for them. The solid density increases by particle rearrangement and by the flattening of particle contacts. Driving (or retarding) forces result from capillary stresses, from applied mechanical stresses, from the pressure of gas entrapped in closed pores and from differences in chemical potential of the dissolved and precipitated matter. At higher densities the driving force may become very small, since the liquid pressure decreases and a negative contribution from the solid-liquid interface energy increases. At this stage grain coarsening plays an important role for the continued filling of larger and larger pores. The model is applied to describe nonisothermal densification curves measured on Si3N4 for various hold temperatures, axial stresses and green densities. Adjusting a moderate number of parameters all having a physical meaning leads to good agreement between theory and experiment
Brownian motion in a non-homogeneous force field and photonic force microscope
The Photonic Force Microscope (PFM) is an opto-mechanical technique based on
an optical trap that can be assumed to probe forces in microscopic systems.
This technique has been used to measure forces in the range of pico- and
femto-Newton, assessing the mechanical properties of biomolecules as well as of
other microscopic systems. For a correct use of the PFM, the force field to
measure has to be invariable (homogeneous) on the scale of the Brownian motion
of the trapped probe. This condition implicates that the force field must be
conservative, excluding the possibility of a rotational component. However,
there are cases where these assumptions are not fulfilled Here, we show how to
improve the PFM technique in order to be able to deal with these cases. We
introduce the theory of this enhanced PFM and we propose a concrete analysis
workflow to reconstruct the force field from the experimental time-series of
the probe position. Furthermore, we experimentally verify some particularly
important cases, namely the case of a conservative or rotational force-field
Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors
Cherenkov detectors employ various methods to maximize light collection at
the photomultiplier tubes (PMTs). These generally involve the use of highly
reflective materials lining the interior of the detector, reflective materials
around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the
use of water-soluble wavelength-shifters has been explored to increase the
measurable light yield of Cherenkov radiation in water. These wave-shifting
chemicals are capable of absorbing light in the ultravoilet and re-emitting the
light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we
have characterized the increase in light yield from three compounds in water:
4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in
PMT response at a concentration of 1 ppm as: 1.88 0.02 for
4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 0.03 for
Carbostyril-124, and 1.20 0.02 for Amino-G Salt. The response of
4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of
the experimental gain at 1 ppm concentration. Finally, we report an increase in
neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water
Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.Comment: 7 pages, 9 figures, Submitted to Nuclear Instruments and Methods
- …