254 research outputs found

    Characterisation of a Desmosterol Reductase Involved in Phytosterol Dealkylation in the Silkworm, Bombyx mori

    Get PDF
    Most species of invertebrate animals cannot synthesise sterols de novo and many that feed on plants dealkylate phytosterols (mostly C29 and C28) yielding cholesterol (C27). The final step of this dealkylation pathway involves desmosterol reductase (DHCR24)-catalysed reduction of desmosterol to cholesterol. We now report the molecular characterisation in the silkworm, Bombyx mori, of such a desmosterol reductase involved in production of cholesterol from phytosterol, rather than in de novo synthesis of cholesterol. Phylogenomic analysis of putative desmosterol reductases revealed the occurrence of various clades that allowed for the identification of a strong reductase candidate gene in Bombyx mori (BGIBMGA 005735). Following PCR-based cloning of the cDNA (1.6 kb) and its heterologous expression in Saccharomyces cerevisae, the recombinant protein catalysed reduction of desmosterol to cholesterol in an NADH- and FAD- dependent reaction

    Mutagenicity of comfrey (Symphytum Officinale) in rat liver

    Get PDF
    Comfrey is a rat liver toxin and carcinogen that has been used as a vegetable and herbal remedy by humans. In order to evaluate the mechanisms underlying its carcinogenicity, we examined the mutagenicity of comfrey in the transgenic Big Blue rat model. Our results indicate that comfrey is mutagenic in rat liver and the types of mutations induced by comfrey suggest that its tumorigenicity results from the genotoxicity of pyrrolizidine alkaloids in the plant

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Genomic Signature-Based Identification of Influenza A Viruses Using RT-PCR/Electro-Spray Ionization Mass Spectrometry (ESI-MS) Technology

    Get PDF
    BACKGROUND: The emergence and rapid spread of the 2009 H1N1 pandemic influenza A virus (H1N1pdm) in humans highlights the importance of enhancing the capability of existing influenza surveillance systems with tools for rapid identification of emerging and re-emerging viruses. One of the new approaches is the RT-PCR electrospray ionization mass spectrometry (RT-PCR/ESI-MS) technology, which is based on analysis of base composition (BC) of RT-PCR amplicons from influenza "core" genes. Combination of the BC signatures represents a "genomic print" of an influenza A virus. METHODOLOGY/PRINCIPAL FINDINGS: Here, 757 samples collected between 2006 and 2009 were tested, including 302 seasonal H1N1, 171 H3N2, 7 swine triple reassortants, and 277 H1N1pdm viruses. Of the 277 H1N1pdm samples, 209 were clinical specimens (throat, nasal and nasopharyngeal swabs, nasal washes, blood and sputum). BC signatures for the clinical specimen from one of the first cases of the 2009 pandemic, A/California/04/2009, confirmed it as an unusual, previously unrecognized influenza A virus, with "core" genes related to viruses of avian, human and swine origins. Subsequent analysis of additional 276 H1N1pdm samples revealed that they shared the genomic print of A/California/04/2009, which differed from those of North American swine triple reassortant viruses, seasonal H1N1 and H3N2 and other viruses tested. Moreover, this assay allowed distinction between "core" genes of co-circulating groups of seasonal H1N1, such as clades 2B, 2C, and their reassortants with dual antiviral resistance to adamantanes and oseltamivir. CONCLUSIONS/SIGNIFICANCE: The RT-PCR/ESI-MS assay is a broad range influenza identification tool that can be used directly on clinical specimens for rapid and accurate detection of influenza virus genes. The assay differentiates the H1N1pdm from seasonal and other nonhuman hosts viruses. Although not a diagnostic tool, this assay demonstrates its usefulness and robustness in influenza virus surveillance and detection of novel and unusual viruses with previously unseen genomic prints

    Dendritic Slow Dynamics Enables Localized Cortical Activity to Switch between Mobile and Immobile Modes with Noisy Background Input

    Get PDF
    Mounting lines of evidence suggest the significant computational ability of a single neuron empowered by active dendritic dynamics. This motivates us to study what functionality can be acquired by a network of such neurons. The present paper studies how such rich single-neuron dendritic dynamics affects the network dynamics, a question which has scarcely been specifically studied to date. We simulate neurons with active dendrites networked locally like cortical pyramidal neurons, and find that naturally arising localized activity – called a bump – can be in two distinct modes, mobile or immobile. The mode can be switched back and forth by transient input to the cortical network. Interestingly, this functionality arises only if each neuron is equipped with the observed slow dendritic dynamics and with in vivo-like noisy background input. If the bump activity is considered to indicate a point of attention in the sensory areas or to indicate a representation of memory in the storage areas of the cortex, this would imply that the flexible mode switching would be of great potential use for the brain as an information processing device. We derive these conclusions using a natural extension of the conventional field model, which is defined by combining two distinct fields, one representing the somatic population and the other representing the dendritic population. With this tool, we analyze the spatial distribution of the degree of after-spike adaptation and explain how we can understand the presence of the two distinct modes and switching between the modes. We also discuss the possible functional impact of this mode-switching ability

    Adaptive Contact Networks Change Effective Disease Infectiousness and Dynamics

    Get PDF
    Human societies are organized in complex webs that are constantly reshaped by a social dynamic which is influenced by the information individuals have about others. Similarly, epidemic spreading may be affected by local information that makes individuals aware of the health status of their social contacts, allowing them to avoid contact with those infected and to remain in touch with the healthy. Here we study disease dynamics in finite populations in which infection occurs along the links of a dynamical contact network whose reshaping may be biased based on each individual's health status. We adopt some of the most widely used epidemiological models, investigating the impact of the reshaping of the contact network on the disease dynamics. We derive analytical results in the limit where network reshaping occurs much faster than disease spreading and demonstrate numerically that this limit extends to a much wider range of time scales than one might anticipate. Specifically, we show that from a population-level description, disease propagation in a quickly adapting network can be formulated equivalently as disease spreading on a well-mixed population but with a rescaled infectiousness. We find that for all models studied here – SI, SIS and SIR – the effective infectiousness of a disease depends on the population size, the number of infected in the population, and the capacity of healthy individuals to sever contacts with the infected. Importantly, we indicate how the use of available information hinders disease progression, either by reducing the average time required to eradicate a disease (in case recovery is possible), or by increasing the average time needed for a disease to spread to the entire population (in case recovery or immunity is impossible)

    Neural Correlates of Ongoing Conscious Experience: Both Task-Unrelatedness and Stimulus-Independence Are Related to Default Network Activity

    Get PDF
    The default mode network (DMN) is a set of brain regions that consistently shows higher activity at rest compared to tasks requiring sustained focused attention toward externally presented stimuli. The cognitive processes that the DMN possibly underlies remain a matter of debate. It has alternately been proposed that DMN activity reflects unfocused attention toward external stimuli or the occurrence of internally generated thoughts. The present study aimed at clarifying this issue by investigating the neural correlates of the various kinds of conscious experiences that can occur during task performance. Four classes of conscious experiences (i.e., being fully focused on the task, distractions by irrelevant sensations/perceptions, interfering thoughts related to the appraisal of the task, and mind-wandering) that varied along two dimensions (β€œtask-relatedness” and β€œstimulus-dependency”) were sampled using thought-probes while the participants performed a go/no-go task. Analyses performed on the intervals preceding each probe according to the reported subjective experience revealed that both dimensions are relevant to explain activity in several regions of the DMN, namely the medial prefrontal cortex, posterior cingulate cortex/precuneus, and posterior inferior parietal lobe. Notably, an additive effect of the two dimensions was demonstrated for midline DMN regions. On the other hand, lateral temporal regions (also part of the DMN) were specifically related to stimulus-independent reports. These results suggest that midline DMN regions underlie cognitive processes that are active during both internal thoughts and external unfocused attention. They also strengthen the view that the DMN can be fractionated into different subcomponents and reveal the necessity to consider both the stimulus-dependent and the task-related dimensions of conscious experiences when studying the possible functional roles of the DMN

    Molecular classification of selective oestrogen receptor modulators on the basis of gene expression profiles of breast cancer cells expressing oestrogen receptor Ξ±

    Get PDF
    The purpose of this study was to classify selective oestrogen receptor modulators based on gene expression profiles produced in breast cancer cells expressing either wtERΞ± or mutant351ERΞ±. In total, 54 microarray experiments were carried out by using a commercially available Atlas cDNA Expression Arrays (Clontech), containing 588 cancer-related genes. Nine sets of data were generated for each cell line following 24 h of treatment: expression data were obtained for cells treated with vehicle EtOH (Control); with 10βˆ’9 or 10βˆ’8 M oestradiol; with 10βˆ’6 M 4-hydroxytamoxifen; with 10βˆ’6 M raloxifene; with 10βˆ’6 M idoxifene, with 10βˆ’6 M EM 652, with 10βˆ’6 M GW 7604; with 5Γ—10βˆ’5 M resveratrol and with 10βˆ’6 M ICI 182,780. We developed a new algorithm β€˜Expression Signatures’ to classify compounds on the basis of differential gene expression profiles. We created dendrograms for each cell line, in which branches represent relationships between compounds. Additionally, clustering analysis was performed using different subsets of genes to assess the robustness of the analysis. In general, only small differences between gene expression profiles treated with compounds were observed with correlation coefficients ranged from 0.83 to 0.98. This observation may be explained by the use of the same cell context for treatments with compounds that essentially belong to the same class of drugs with oestrogen receptors related mechanisms. The most surprising observation was that ICI 182,780 clustered together with oestrodiol and raloxifene for cells expressing wtERΞ± and clustered together with EM 652 for cells expressing mutant351ERΞ±. These data provide a rationale for a more precise and elaborate study in which custom made oligonucleotide arrays can be used with comprehensive sets of genes known to have consensus and putative oestrogen response elements in their promoter regions

    Sequestration and Tissue Accumulation of Human Malaria Parasites: Can We Learn Anything from Rodent Models of Malaria?

    Get PDF
    The sequestration of Plasmodium falciparum–infected red blood cells (irbcs) in the microvasculature of organs is associated with severe disease; correspondingly, the molecular basis of irbc adherence is an active area of study. In contrast to P. falciparum, much less is known about sequestration in other Plasmodium parasites, including those species that are used as models to study severe malaria. Here, we review the cytoadherence properties of irbcs of the rodent parasite Plasmodium berghei ANKA, where schizonts demonstrate a clear sequestration phenotype. Real-time in vivo imaging of transgenic P. berghei parasites in rodents has revealed a CD36-dependent sequestration in lungs and adipose tissue. In the absence of direct orthologs of the P. falciparum proteins that mediate binding to human CD36, the P. berghei proteins and/or mechanisms of rodent CD36 binding are as yet unknown. In addition to CD36-dependent schizont sequestration, irbcs accumulate during severe disease in different tissues, including the brain. The role of sequestration is discussed in the context of disease as are the general (dis)similarities of P. berghei and P. falciparum sequestration
    • …
    corecore