31 research outputs found

    HF-EPR, Raman, UV/VIS Light Spectroscopic, and DFT Studies of the Ribonucleotide Reductase R2 Tyrosyl Radical from Epstein-Barr Virus

    Get PDF
    Epstein-Barr virus (EBV) belongs to the gamma subfamily of herpes viruses, among the most common pathogenic viruses in humans worldwide. The viral ribonucleotide reductase small subunit (RNR R2) is involved in the biosynthesis of nucleotides, the DNA precursors necessary for viral replication, and is an important drug target for EBV. RNR R2 generates a stable tyrosyl radical required for enzymatic turnover. Here, the electronic and magnetic properties of the tyrosyl radical in EBV R2 have been determined by X-band and high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy recorded at cryogenic temperatures. The radical exhibits an unusually low g1-tensor component at 2.0080, indicative of a positive charge in the vicinity of the radical. Consistent with these EPR results a relatively high C-O stretching frequency associated with the phenoxyl radical (at 1508 cm−1) is observed with resonance Raman spectroscopy. In contrast to mouse R2, EBV R2 does not show a deuterium shift in the resonance Raman spectra. Thus, the presence of a water molecule as a hydrogen bond donor moiety could not be identified unequivocally. Theoretical simulations showed that a water molecule placed at a distance of 2.6 Å from the tyrosyl-oxygen does not result in a detectable deuterium shift in the calculated Raman spectra. UV/VIS light spectroscopic studies with metal chelators and tyrosyl radical scavengers are consistent with a more accessible dimetal binding/radical site and a lower affinity for Fe2+ in EBV R2 than in Escherichia coli R2. Comparison with previous studies of RNR R2s from mouse, bacteria, and herpes viruses, demonstrates that finely tuned electronic properties of the radical exist within the same RNR R2 Ia class

    Spectroscopic Studies of the Iron and Manganese Reconstituted Tyrosyl Radical in Bacillus Cereus Ribonucleotide Reductase R2 Protein

    Get PDF
    Ribonucleotide reductase (RNR) catalyzes the rate limiting step in DNA synthesis where ribonucleotides are reduced to the corresponding deoxyribonucleotides. Class Ib RNRs consist of two homodimeric subunits: R1E, which houses the active site; and R2F, which contains a metallo cofactor and a tyrosyl radical that initiates the ribonucleotide reduction reaction. We studied the R2F subunit of B. cereus reconstituted with iron or alternatively with manganese ions, then subsequently reacted with molecular oxygen to generate two tyrosyl-radicals. The two similar X-band EPR spectra did not change significantly over 4 to 50 K. From the 285 GHz EPR spectrum of the iron form, a g1-value of 2.0090 for the tyrosyl radical was extracted. This g1-value is similar to that observed in class Ia E. coli R2 and class Ib R2Fs with iron-oxygen cluster, suggesting the absence of hydrogen bond to the phenoxyl group. This was confirmed by resonance Raman spectroscopy, where the stretching vibration associated to the radical (C-O, ν7a = 1500 cm−1) was found to be insensitive to deuterium-oxide exchange. Additionally, the 18O-sensitive Fe-O-Fe symmetric stretching (483 cm−1) of the metallo-cofactor was also insensitive to deuterium-oxide exchange indicating no hydrogen bonding to the di-iron-oxygen cluster, and thus, different from mouse R2 with a hydrogen bonded cluster. The HF-EPR spectrum of the manganese reconstituted RNR R2F gave a g1-value of ∼2.0094. The tyrosyl radical microwave power saturation behavior of the iron-oxygen cluster form was as observed in class Ia R2, with diamagnetic di-ferric cluster ground state, while the properties of the manganese reconstituted form indicated a magnetic ground state of the manganese-cluster. The recent activity measurements (Crona et al., (2011) J Biol Chem 286: 33053–33060) indicates that both the manganese and iron reconstituted RNR R2F could be functional. The manganese form might be very important, as it has 8 times higher activity

    Human malarial disease: a consequence of inflammatory cytokine release

    Get PDF
    Malaria causes an acute systemic human disease that bears many similarities, both clinically and mechanistically, to those caused by bacteria, rickettsia, and viruses. Over the past few decades, a literature has emerged that argues for most of the pathology seen in all of these infectious diseases being explained by activation of the inflammatory system, with the balance between the pro and anti-inflammatory cytokines being tipped towards the onset of systemic inflammation. Although not often expressed in energy terms, there is, when reduced to biochemical essentials, wide agreement that infection with falciparum malaria is often fatal because mitochondria are unable to generate enough ATP to maintain normal cellular function. Most, however, would contend that this largely occurs because sequestered parasitized red cells prevent sufficient oxygen getting to where it is needed. This review considers the evidence that an equally or more important way ATP deficency arises in malaria, as well as these other infectious diseases, is an inability of mitochondria, through the effects of inflammatory cytokines on their function, to utilise available oxygen. This activity of these cytokines, plus their capacity to control the pathways through which oxygen supply to mitochondria are restricted (particularly through directing sequestration and driving anaemia), combine to make falciparum malaria primarily an inflammatory cytokine-driven disease

    How nature tunes isoenzyme activity in the multifunctional catalytic globin Dehaloperoxidase from Amphitrite ornata

    No full text
    The coelomic hemoglobin of Amphitrite ornata, termed dehaloperoxidase (DHP), is the first known multifunctional catalytic globin to possess biologically-relevant peroxidase and peroxygenase activities. Although the two isoenzymes of DHP, A and B, differ in sequence by only 5 amino acids out of 137 residues, DHP B consistently exhibits a greater activity than isoenzyme A. To delineate the contributions of each amino acid substitution to the activity of either isoenzyme, the substitutions of the five amino acids were systematically investigated, individually and in combination, using 22 mutants. Biochemical assays and mechanistic studies demonstrated that the mutants that only contained the I9L substitution showed increased i) kcat values (peroxidase activity), ii) 5-Br-indole conversion and binding affinity (peroxygenase activity), and iii) rate of Compound ES formation (enzyme activation). Whereas the X-ray structures of the oxyferrous forms of DHP B (L9I) (1.96 Å), DHP A (I9L) (1.20 Å), and WT DHP B (1.81 Å) showed no significant differences, UV–visible spectroscopy (ASoret/A380 ratio) revealed that the I9L substitution increased the 5-coordinate high-spin heme population characterized by the “open” conformation (i.e., distal histidine swung out of the pocket), which likely favors substrate binding. The positioning of the distal histidine closer to the heme cofactor in the solution state also appears to facilitate activation of DHP via the Compound ES intermediate. Taken together, the studies undertaken here shed light on the structure-function relationship in dehaloperoxidase, but also help to establish the foundation for understanding how enzymatic activity can be tuned in isoenzymes of a multifunctional catalytic globin

    Redox equilibration after one-electron reduction of cytochrome c oxidase: Radical formation and a possible hydrogen relay mechanism

    No full text
    Kinetic studies using UV/visible and EPR spectroscopy were carried out to follow the distribution of electrons within beef heart cytochrome c oxidase (CcO), both active and cyanide-inhibited, following addition of reduced cytochrome c as electron donor. In the initial one-electron reduced state the electron is shared between three redox centers, heme a, CuA and a third site, probably CuB. Using a rapid freeze system and the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) a protein radical was also detected. The EPR spectrum of the DMPO adduct of this radical was consistent with tyrosyl radical capture. This may be a feature of a charge relay mechanism involved in some part of the CcO electron transfer system from bound cytochrome c via CuA and heme a to the a3CuB binuclear center

    Three aromatic residues are required for electron transfer during iron mineralization in bacterioferritin

    No full text
    Ferritins are iron storage proteins that overcome the problems of toxicity and poor bioavailability of iron by catalyzing iron oxidation and mineralization through the activity of a diiron ferroxidase site. Unlike in other ferritins, the oxidized di-Fe3+ site of Escherichia coli bacterioferritin (EcBFR) is stable and therefore does not function as a conduit for the transfer of Fe3+ into the storage cavity, but instead acts as a true catalytic cofactor that cycles its oxidation state while driving Fe2+ oxidation in the cavity. Herein, we demonstrate that EcBFR mineralization depends on three aromatic residues near the diiron site, Tyr25, Tyr58, and Trp133, and that a transient radical is formed on Tyr25. The data indicate that the aromatic residues, together with a previously identified inner surface iron site, promote mineralization by ensuring the simultaneous delivery of two electrons, derived from Fe2+ oxidation in the BFR cavity, to the di-ferric catalytic site for safe reduction of O2

    Haptoglobin binding stabilizes Hemoglobin Ferryl Iron and the Globin Radical on Tyrosine β145

    Get PDF
    Hemoglobin (Hb) becomes toxic when released from the erythrocyte. The acute phase protein haptoglobin (Hp) binds avidly to Hb and decreases oxidative damage to Hb itself and to the surrounding proteins and lipids. However, the molecular mechanism underpinning Hp protection is to date unclear. The aim of this study was to use electron paramagnetic resonance (EPR) spectroscopy, stopped flow optical spectrophotometry, and sitedirected mutagenesis to explore the mechanism and specifically the role of specific tyrosine residues in this protection. Results: Following peroxide challenge Hb produces reactive oxidative intermediates in the form of ferryl heme and globin free radicals. Hp binding increases the steady state level of ferryl formation during Hbcatalyzed lipid peroxidation, while at the same time dramatically inhibiting the overall reaction rate. This enhanced ferryl stability is also seen in the absence of lipids and in the presence of external reductants. Hp binding is not accompanied by a decrease in the pK of ferryl protonation; the protonated ferryl species still forms, but is intrinsically less reactive. Ferryl stabilization is accompanied by a significant increase in the concentration of the peroxide-induced tyrosine free radical. EPR spectral parameters and mutagenesis studies suggest that this radical is located on tyrosine 145, the penultimate C-terminal amino acid on the beta Hb subunit. Innovation: Hp binding decreases both the ferryl iron and free radical reactivity of Hb. Conclusion: Hp protects against Hb-induced damage in the vasculature, not by preventing the primary reactivity of heme oxidants, but by rendering the resultant protein products less damaging
    corecore