109 research outputs found

    Economic progress as cancer risk factor. II: Why is overall cancer risk higher in more developed countries?

    Get PDF
    Analysis of data on cancer incidence rates in different countries at different time periods revealed positive association between overall cancer risk and economic progress. Typical explanations of this phenomenon involve improved cancer diagnostics and elevated exposure to carcinogens in industrial countries. Here we provide evidence from human and experimental animal studies suggesting that some other factors associated with high economic development and Western life style may primarily increase the proportion of susceptible to cancer individuals in a population and thus contribute to elevated cancer risks in industrial countries. These factors include (but not limited to): (i) better medical and living conditions that “relax” environmental selection and increase share of individuals prone to chronic inflammation; (ii) several medicines and foods that are not carcinogenic themselves but affect the metabolism of established carcinogens; (iii) nutrition enriched with growth factors; (iv) delayed childbirth. The latter two factors may favor an increase in both cancer incidence rate and longevity in a population. This implies the presence of a trade-off between cancer and aging: factors that postpone aging may simultaneously enhance organism’s susceptibility to several cancers. Key words: cancer risk, individual susceptibility, economic progress, aging

    Physical robustness and resilience among long-lived female siblings: A comparison with sporadic long-livers

    Get PDF
    Long-lived individuals are central in studies of healthy longevity. However, few pro-longevity factors have been identified, presumably because of phenocopies , i.e. individuals that live long by chance. Familial longevity cases may include less phenocopies than sporadic cases and provide better insights into longevity mechanisms. Here we examined whether long-lived female siblings have a better ability to avoid diseases at ages 65+ (proxy for robustness ) and/or survive to extreme ages (proxy for resilience ) compared to sporadic long-livers. A total of 1,156 long-lived female siblings were selected from three nationwide Danish studies and age-matched with sporadic long-lived female controls. Outcomes included cumulative incidence of common health disorders from age 65 and overall survival. Long-lived female siblings had lower risks of some but not all health conditions, most significantly, depression (OR=0.74; 95%CI=0.62-0.88), and less significantly hypertensive (OR=0.84; 95%CI=0.71-0.99) and cerebrovascular (OR=0.73; 95%CI=0.55-0.96) diseases. They also had consistently better survival to extreme ages (HR=0.71; 95%CI= 0.63-0.81) compared to sporadic long-livers. After adjustment for the diseases, the association with mortality changed only marginally suggesting central role of better physiological resilience in familial longevity. Due to their consistently better resilience, familial longevity cases could be more informative than sporadic cases for studying mechanisms of healthy longevity

    Medical Cost Trajectories and Onsets of Cancer and NonCancer Diseases in US Elderly Population

    Get PDF
    Time trajectories of medical costs-associated with onset of twelve aging-related cancer and chronic noncancer diseases were analyzed using the National Long-Term Care Survey data linked to Medicare Service Use files. A special procedure for selecting individuals with onset of each disease was developed and used for identification of the date at disease onset. Medical cost trajectories were found to be represented by a parametric model with four easily interpretable parameters reflecting: (i) prediagnosis cost (associated with initial comorbidity), (ii) cost of the disease onset, (iii) population recovery representing reduction of the medical expenses associated with a disease since diagnosis was made, and (iv) acquired comorbidity representing the difference between post- and pre diagnosis medical cost levels. These parameters were evaluated for the entire US population as well as for the subpopulation conditional on age, disability and comorbidity states, and survival (2.5 years after the date of onset). The developed approach results in a family of new forecasting models with covariates

    Cancer Risk and Behavioral Factors, Comorbidities, and Functional Status in the US Elderly Population

    Get PDF
    About 80% of all cancers are diagnosed in the elderly and up to 75% of cancers are associated with behavioral factors. An approach to estimate the contribution of various measurable factors, including behavior/lifestyle, to cancer risk in the US elderly population is presented. The nationally representative National Long-Term Care Survey (NLTCS) data were used for measuring functional status and behavioral factors in the US elderly population (65+), and Medicare Claims files linked to each person from the NLTCS were used for estimating cancer incidence. The associations (i.e., relative risks) of selected factors with risks of breast, prostate, lung and colon cancers were evaluated and discussed. Behavioral risk factors significantly affected cancer risks in the US elderly. The most influential of potentially preventable risk factors can be detected with this approach using NLTCS-Medicare linked dataset and for further deeper analyses employing other datasets with detailed risk factors description

    Trade-offs in the effects of the apolipoprotein E polymorphism on risks of diseases of the heart, cancer, and neurodegenerative disorders: Insights on mechanisms from the long life family study

    Get PDF
    The lack of evolutionary established mechanisms linking genes to age-related traits makes the problem of genetic susceptibility to health span inherently complex. One complicating factor is genetic trade-off. Here we focused on long-living participants of the Long Life Family Study (LLFS), their offspring, and spouses to: (1) Elucidate whether trade-offs in the effect of the apolipoprotein E e4 allele documented in the Framingham Heart Study (FHS) are a more general phenomenon, and (2) explore potential mechanisms generating age- and gender-specific trade-offs in the effect of the e4 allele on cancer, diseases of the heart, and neurodegenerative disorders assessed retrospectively in the LLFS populations. The e4 allele can diminish risks of cancer and diseases of the heart and confer risks of diseases of the heart in a sex-, age-, and LLFS-population-specific manner. A protective effect against cancer is seen in older long-living men and, potentially, their sons (>75 years, relative risk [RR](>75)=0.48, p=0.086), which resembles our findings in the FHS. The protective effect against diseases of the heart is limited to long-living older men (RR(>76)=0.50, p=0.016), as well. A detrimental effect against diseases of the heart is characteristic for a normal LLFS population of male spouses and is specific for myocardial infarction (RR=3.07, p=2.1×10(−3)). These trade-offs are likely associated with two inherently different mechanisms, including disease-specific (detrimental; characteristic for a normal male population) and systemic, aging-related (protective; characteristic for older long-living men) mechanisms. The e4 allele confers risks of neurological disorders in men and women (RR=1.98, p=0.046). The results highlight the complex role of the e4 allele in genetic susceptibility to health span

    Pleiotropic Meta-Analysis of Age-Related Phenotypes Addressing Evolutionary Uncertainty in Their Molecular Mechanisms

    Get PDF
    Age-related phenotypes are characterized by genetic heterogeneity attributed to an uncertain role of evolution in establishing their molecular mechanisms. Here, we performed univariate and pleiotropic meta-analyses of 24 age-related phenotypes dealing with such evolutionary uncertainty and leveraging longitudinal information. Our analysis identified 237 novel single nucleotide polymorphisms (SNPs) in 199 loci with phenotype-specific (61 SNPs) and pleiotropic (176 SNPs) associations and replicated associations for 160 SNPs in 68 loci in a modest sample of 26,371 individuals from five longitudinal studies. Most pleiotropic associations (65.3%, 115 of 176 SNPs) were impacted by heterogeneity, with the natural-selection—free genetic heterogeneity as its inevitable component. This pleiotropic heterogeneity was dominated (93%, 107 of 115 SNPs) by antagonistic genetic heterogeneity, a phenomenon that is characterized by antagonistic directions of genetic effects for directly correlated phenotypes. Genetic association studies of age-related phenotypes addressing the evolutionary uncertainty in establishing their molecular mechanisms have power to substantially improve the efficiency of the analyses. A dominant form of heterogeneous pleiotropy, antagonistic genetic heterogeneity, provides unprecedented insight into the genetic origin of age-related phenotypes and side effects in medical care that is counter-intuitive in medical genetics but naturally expected when molecular mechanisms of age-related phenotypes are not due to direct evolutionary selection

    Composite measure of physiological dysregulation as a predictor of mortality: The Long Life Family Study

    Get PDF
    Biological aging results in changes in an organism that accumulate over age in a complex fashion across different regulatory systems, and their cumulative effect manifests in increased physiological dysregulation (PD) and declining robustness and resilience that increase risks of health disorders and death. Several composite measures involving multiple biomarkers that capture complex effects of aging have been proposed. We applied one such approach, the Mahalanobis distance (

    Dynamic Determinants of Longevity and Exceptional Health

    Get PDF
    It is well known from epidemiology that values of indices describing physiological state in a given age may influence human morbidity and mortality risks. Studies of connection between aging and life span suggest a possibility that dynamic properties of age trajectories of the physiological indices could also be important contributors to morbidity and mortality risks. In this paper we use data on longitudinal changes in body mass index, diastolic blood pressure, pulse pressure, pulse rate, blood glucose, hematocrit, and serum cholesterol in the Framingham Heart Study participants, to investigate this possibility in depth. We found that some of the variables describing individual dynamics of the age-associated changes in physiological indices influence human longevity and exceptional health more substantially than the variables describing physiological state. These newly identified variables are promising targets for prevention aiming to postpone onsets of common elderly diseases and increase longevity

    How Well Does the Family Longevity Selection Score Work: A Validation Test Using the Utah Population Database

    Get PDF
    The Family Longevity Selection Score (FLoSS) was used to select families for the Long Life Family Study (LLFS) but has never been validated in other populations. The goal of this paper is to validate how well the FLoSS-based selection procedure works in an independent dataset. In this paper, we computed FLoSS using the lifespan data of 234,155 individuals from a large comprehensive genealogically-based resource, the Utah Population Database (UPDB), born between 1779 and 1910 with mortality follow-up through 2012–2013. Computations of FLoSS in a specific year (1980) confirmed the survival advantage of the “exceptional” sibships (defined by LLFS FLoSS threshold, FLoSS ≥ 7). We found that the subsample of the UPDB participants born after 1900 who were from the “exceptional” sibships had survival curves similar to that of the US participants from the LLFS probands' generation. Comparisons between the offspring of parents with “exceptional” and “ordinary” survival showed the survival advantage of the “exceptional” offspring. Investigators seeking to explain the extent genetics and environment contribute to exceptional survival will benefit from the use of exceptionally long-lived individuals and their relatives. Appropriate ranking of families by survival exceptionality and their availability for the purposes of providing genetic and phenotypic data is critical for selecting participants into such studies. This study validated the FLoSS as selection criteria in family longevity studies using UPDB
    corecore