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Trade-Offs in the Effects of the Apolipoprotein E
Polymorphism on Risks of Diseases of the Heart,

Cancer, and Neurodegenerative Disorders:
Insights on Mechanisms from the Long Life Family Study

Alexander M. Kulminski,1 Konstantin G. Arbeev,1 Irina Culminskaya,1

Svetlana V. Ukraintseva,1 Eric Stallard,1 Michael A. Province,2 and Anatoli I. Yashin1

Abstract

The lack of evolutionary established mechanisms linking genes to age-related traits makes the problem of
genetic susceptibility to health span inherently complex. One complicating factor is genetic trade-off. Here we
focused on long-living participants of the Long Life Family Study (LLFS), their offspring, and spouses to: (1)
Elucidate whether trade-offs in the effect of the apolipoprotein E e4 allele documented in the Framingham
Heart Study (FHS) are a more general phenomenon, and (2) explore potential mechanisms generating age- and
gender-specific trade-offs in the effect of the e4 allele on cancer, diseases of the heart, and neurodegenerative
disorders assessed retrospectively in the LLFS populations. The e4 allele can diminish risks of cancer and
diseases of the heart and confer risks of diseases of the heart in a sex-, age-, and LLFS-population-specific
manner. A protective effect against cancer is seen in older long-living men and, potentially, their sons ( > 75
years, relative risk [RR] > 75 = 0.48, p = 0.086), which resembles our findings in the FHS. The protective effect
against diseases of the heart is limited to long-living older men (RR > 76 = 0.50, p = 0.016), as well. A detrimental
effect against diseases of the heart is characteristic for a normal LLFS population of male spouses and is specific
for myocardial infarction (RR = 3.07, p = 2.1 · 10 - 3). These trade-offs are likely associated with two inherently
different mechanisms, including disease-specific (detrimental; characteristic for a normal male population) and
systemic, aging-related (protective; characteristic for older long-living men) mechanisms. The e4 allele confers
risks of neurological disorders in men and women (RR = 1.98, p = 0.046). The results highlight the complex role
of the e4 allele in genetic susceptibility to health span.

Introduction

Recent increases in life expectancy in developed
countries raise concerns about potential expansion of

morbidity.1,2 An effective strategy to mitigate this problem
and extend health span could be to find genes predisposing
to health traits in late (post-reproductive) life. Despite
general consensus on the importance of this strategy, spe-
cific implementations, such as in genome-wide association
studies, face serious difficulties.3,4 One of the major sources
of these difficulties is that genes that can potentially confer
risks of traits in late life have not been the result of direct
evolutionary selection against or in favor of such traits. This
lack of direct, evolutionary programmed mechanisms link-
ing genes to traits in late life implies that genes can confer

risks of such traits in a complex fashion through different
mechanisms.

One fundamental mechanism, which is the most studied
to date, is associated with the biochemical genetic basis of a
specific trait.5 Another mechanism, which is substantially
less studied, is associated with the systemic decline in the
functioning of an organism with aging.5,6 A substantial basis
of the systemic mechanism comes from observations of
changes in the expressions of various phenotypes, regardless
of their specifics with age (e.g., levels of physiological
markers,7–9 bone mineral density,10 or risks of aging-related
diseases11). Accordingly, this systemic mechanism can be
associated with aging and, thus, explain the risks of not just
one, but perhaps a major portion of traits in late life.5,6 An
exciting idea is that the discovery of genes associated with
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this systemic mechanism could be a major breakthrough in
the problem of the genetic regulation of health span.1,12,13

Landmark properties of the systemic, aging-related bio-
genetic mechanism of health span are its broad, inherently
pleiotropic nature14,15 and its sensitivity to age. Pleiotropy
in the effects of genes on traits in late life is becoming
recognized increasingly.14 Studies also provide examples
of its complex forms, such as genetic trade-offs16–22 and
antagonistic pleiotropy (see ref. 23; examples are in refs.
24–29). Trade-off is a broader concept than antagonistic
pleiotropy because it refers to antagonistic effects of the
same allele on different phenotypes that may not neces-
sarily include fitness traits. Studies also provide evidence
of age-sensitive genetic effects, i.e., that the same alleles
could confer different risks of the same traits at different
ages.24,30–36

In this study, we used information on 4659 genotyped
participants of the Long Life Family Study (LLFS) to ad-
dress two questions. First, we investigated whether recently
documented trade-offs in the effects of the apolipoprotein E
(APOE) common polymorphism on major human diseases
in the Framingham Heart Study (FHS)18,34 are a more
general phenomenon extendable to other populations. Sec-
ond, we explore mechanisms that can generate age- and
gender-specific trade-offs in the effect of the APOE e4 allele
on major human diseases, including cancer, diseases of the
heart, and neurodegenerative disorders.

Methods

Data

The LLFS collected data at four field centers (three in the
United States and one in Denmark) on families showing
exceptional familial longevity. The study eligibility criteria
are described in detail elsewhere.37–39 Briefly, in the United
States, the families eligible for the LLFS must have two
living siblings aged 80 + years, two living offspring of one
or more of the siblings, and a living spouse of one of the
offspring; the offspring represent a normal population. In
addition, the family must demonstrate exceptional longevity
on the basis of a Family Longevity Selection Score, which is
a summary-measure based on the survival experience of the
oldest living generation of siblings relative to what would be
expected based on birth cohort life tables.37

In Denmark, individuals who would be aged 90 + years
during the study recruitment period were first identified in
the Danish National Register of Persons.38 Then, using in-
formation on the place of birth and the names, parish reg-
isters available in regional archives were searched to locate
the parents of the elderly individuals to identify sibships.
The identified subjects were contacted to further assess the
family’s eligibility for participation in the LLFS using cri-
teria parallel to that used in the United States.

Information from the 4954 US and Danish LLFS partic-
ipants was collected using similar questionnaires and in-
home physical examinations at baseline between 2006 and
2009. Information regarding onset of diseases was assessed
retrospectively at baseline from self-reports. The LLFS
participants have been followed longitudinally. Because
prospective information on ages at onset of diseases is very
limited (available currently through April, 2013), only ret-
rospective information was used in this study.

Biospecimens were collected at baseline. Genotyping of
the APOE polymorphism was conducted using procedures
detailed elsewhere.40 The data include information on the
APOE e2/3/4 polymorphism for the 4659 LLFS participants,
consisting of long-living individuals (n = 1384, probands and
siblings), their offspring (n = 2321), and 177 spouses of long-
living individuals and 777 spouses of offspring. Due to the
small number of spouses of the long-living individuals, they
were pooled together with spouses of offspring (n = 954).

Analysis

Outcomes considered in this paper include ages at onset of
diseases of the heart, cancer, and neurodegenerative disorders
(ND). Diseases of the heart assessed in the LLFS included
myocardial infarction (MI), congestive heart failure (CHF),
coronary angioplasty (CA), and atrial fibrillation (AF). Can-
cer included all sites except skin. Neurodegenerative disor-
ders included dementia and/or Alzheimer’s disease.

We considered differences in the risks of the outcomes for
carriers and non-carriers of the APOE e4 allele, defined as
the e2/4, e3/4, and e4/4 genotypes for the carriers and the
e2/2, e2/3, and e3/3 genotypes for the non-carriers.

Associations of the e4 allele with risks of the selected
diseases were characterized by the Kaplan–Meier estimator
and the Cox proportional hazard regression model in the
samples of survivors selected for the LLFS and examined at
baseline. Accordingly, only retrospective information on
ages at onset of diseases was retained for such analyses. The
time variable in the analyses was the age at onset of a dis-
ease or the age at interview at baseline to represent right
censoring. All models were adjusted for field center and for
birth cohorts measured by age at baseline; other adjustments
were explicitly stated when applicable. The proportionality
of the hazards was inspected by visual inspection of the
survival curves. The cut offs in age were chosen based on
the number of people in the groups. The analyses were
conducted in men and women separately. We used a robust
sandwich estimator of variances in the Cox model to ac-
count for potential clustering (e.g., familial). Statistical an-
alyses were conducted using SAS (release 9.3, Cary, NC).

Table S1 (Supplementary Data are available at www
.liebertonline.com/rej/) shows that the proportion of the e4
allele carriers differs between long-living individuals, their
offspring, and spouses. It has been shown that this propor-
tion is significantly lower in offspring of the long-living
individuals compared to spouses of offspring.40 Supple-
mentary Table S1 also shows that it further declines in long-
living individuals compared to younger populations. Given
the differences in the proportions of the e4 allele, the ana-
lyses were conducted separately for each family group un-
less explicitly stated.

Results

Probability of remaining free of cancer

Figure 1A shows that long-living men carrying the e4
allele can potentially be protected against cancer. This
protective effect appears to be limited to onsets of cancers at
ages older than 75 years, which resembles a similar finding
of protective effect of this allele in two independent popu-
lations of older males from the FHS original and Offspring
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cohorts.34 The e4 allele may also be protective against cancer
in sons of the long-living parents at older ages in the LLFS
(Fig. S1B). Male spouses carrying the e4 allele contract
cancer at younger ages compared to non-carriers of this allele,
but the effect of this allele can change at older ages (Fig.
S1C). Empirical analyses also suggest trends for a detrimental
effect of the e4 allele in long-living women and for a pro-
tective effect in female offspring and spouses (Fig. S1D–F).

Analysis of the relative risks (RRs) of cancer using the
Cox proportional hazards regression model (Table S2, All)
underestimates the effects because it disregards age-related
heterogeneity, which is seen as a disproportional hazard
(Figs. 1A, and S1). Focusing on the more homogeneous
group of individuals who had onset of cancer or were right
censored at ages older than 75 years, the estimates of the
RRs for men become substantially improved (Fig. 1A, see
RRs in the inset and Tables 1 and S2). Given the potentially
protective role of the e4 allele in sons of the long-living
parents (Fig. S1B), these samples can be pooled together.
However, because only a few sons were aged older than 75
years (Fig. S1B), the improvement in the estimates of the
RRs for the pooled older sample was minor (Table 1;
RR = 0.48, p = 0.086). The estimates of the RRs in women
with potential disproportionality in risks (Fig. S1F) were not
refined because of insufficient number of cancer cases at
older ages for such analyses.

FIG. 1. Empirical age patterns of probability of remaining free of cancer (A), diseases of heart (B and C), and myocardial
infarction (MI) (D) for long-living (LL) men (A and B) and male spouses (C and D) of long-living women and offspring
who carry (E4) and do not carry (NoE4) the APOE e4 allele. The numbers in the insets show the total number of genotyped
individuals and the number of onsets of diseases among them. RR denotes relative risks evaluated using the Cox regression
model. Subscripts for RR denote age groups (see details in Table 1 footnotes). More details for these estimates are given in:
(A) Tables 1 and S2, (B and C) Table 2, and (D) Table 3. Color images available online at www.liebertpub.com/rej

Table 1. Relative Risks of Cancer in Different

Groups of the Genotyped Male Participants

of the Long Life Family Study

Sample
Age

group Ntotal Ncancer RR p
95%
CI

LLFS_P All 654 146 0.78 0.332 0.46–1.30
LLFS_P > 75 580 82 0.50 0.099 0.22–1.14
LLFS_P + O > 75 614 84 0.48 0.086 0.21–1.11

All models were adjusted for birth cohorts measured by age at
baseline and the field centers. Models for pooled samples of parents
and offspring (LLFS_P + O), and offspring and spouses (LLFS_O +
S) are additionally adjusted for differences between long-living
individuals, spouses of long-living individuals, offspring, and
spouses of offspring, as applicable. These adjustments do not
substantially modify the estimates implying that these factors play
at most minor mediating role.

Notations in the ‘‘Age group’’ column indicate the range of ages
at onset of cancer or right censoring. ‘‘All’’ denotes the sample of
all ages; ‘‘ > 75’’ implies a group of individuals who had onset of
cancer at ages older than 75 years or was right censored at baseline
(see Methods).

RR, relative risk; CI, confidence interval; Ntotal and Ncancer, the
total number of genotyped individuals and the number of onsets of
cancer among them, respectively; LLFS_P, long-living participants
of the Long Life Family Study (LLFS); LLFS_O, offspring of the
LLFS long-living individuals; LLFS_S, spouses of the LLFS long-
living individuals and offspring.

130 KULMINSKI ET AL.



Probability of remaining free of diseases of the heart

Figure 1B shows that long-living men carrying the e4
allele can be also protected against diseases of the heart. As
in the case of cancer, this protective effect appears to be
limited to onsets at older ages (about 77 years and older). No
role of the e4 allele is seen in risks of diseases of the heart in
older sons of the long-living parents (Fig. S2B). Male
spouses carrying the e4 allele appear to be at higher risks
compared to the non-e4 carriers (Fig. 1C). This detrimental
effect is not sensitive to the ages at onset. Empirical esti-
mates also suggest a potential detrimental effect of the e4
allele on risks of diseases of the heart in long-living women
(Fig. S2D). No effect of the e4 allele is seen in female
offspring (Fig. S2E) or spouses (Fig. S2F).

Unlike cancer, however, empirical estimates in the case
of diseases of the heart in the long-living individuals, par-
ticularly in men, are affected by cohort specifics and by
differences between field centers. Evaluating the RRs in
long-living individuals, disregarding age-related heteroge-
neity and using unconditional and conditional models,
shows that the estimates for long-living men improve, at-
taining marginal significance which strengthens the protec-
tive role of the e4 allele (Fig. 1B, Table 2).

These analyses do not support either protective or detri-
mental role of the e4 allele in male offspring or in different
samples of women (Table S3, All). Empirically manifested
age-independent detrimental effect of the e4 allele in male
spouses (Fig. 1C) attains suggestive significance (Fig. 1C
and Table 2). The analyses show that the protective effect of
the e4 allele becomes substantially improved in long-living
men beginning at ages at onset of diseases of the heart older
than 76 years (see RR > 76 in Fig. 1B and Table 2).

Unlike cancer, we had a relatively large number of cases
with specific heart pathologies in the studied samples. This
allowed us to address the question of whether or not the
observed associations of the e4 allele with diseases of the
heart are explained by their specific forms (see Methods).
The analyses show that protective effect at older ages is
distributed uniformly across all heart pathologies assessed in
the LLFS, a result that suggests that protective effect can
unlikely be attributed to a specific form of heart disease
(Table 3). In contrast, the detrimental effect of the e4 allele

in male spouses is primarily due to MI (Table 3) and it is
pronounced regardless of age at onset (Fig. 1D). The dif-
ferential role of the e4 allele across these samples in dif-
ferent heart pathologies can unlikely be explained by the
sample size differences (Table 3).

Probability of remaining free of ND

Due to the small number of onsets of ND, the analyses
were conducted in the pooled sample of all family members
(virtually all onsets of ND were at ages of 78 years and
older). Table 4 shows that both men and women carrying the
e4 allele may be at risk of ND. This detrimental effect at-
tains nominal significance in the pooled sample of men and
women.

Discussion and Conclusions

Genetic association studies, including those using ge-
nome-wide resources, often implicitly assume deterministic
(unconditional) linkage of genes with age-related traits. A
direct consequence of this hypothesis is an assumption of
population genetic risks. However, experimental evidence

Table 2. Relative Risks of Diseases of Heart

in Different Groups of the Genotyped Male

Participants of the Long Life Family Study

Sample
Age

group Ntotal NHD RR p 95% CI

LLFS_Pa All 653 245 0.76 0.181 0.50–1.14
LLFS_P All 653 245 0.69 0.076 0.46–1.04
LLFS_P > 76 549 152 0.50 0.016 0.28–0.88
LLFS_S All 448 74 1.52 0.096 0.93–2.50

aUnconditional model. Other models were adjusted for birth
cohorts measured by age at baseline and the field centers.

Ntotal and NHD, the total number of genotyped individuals and the
number of onsets of diseases of heart (HD) among them,
respectively; RR, relative risk; CI, confidence interval; LLFS_P,
long-living participants of the Long Life Family Study (LLFS);
LLFS_O, offspring of the LLFS long-living individuals; LLFS_S,
spouses of the LLFS long-living individuals and offspring.

Table 3. Relative Risks of Specific Forms

of Diseases of Heart in Different Groups

of the Genotyped Male Participants

of the Long Life Family Study

Sample Disease
Age

group Ntotal NHD RR p
95%
CI

LLFS_P MI > 76 595 44 0.62 0.370 0.22–1.76
CHF > 76 629 54 0.49 0.160 0.18–1.33
CA > 76 596 54 0.67 0.393 0.26–1.69
AF > 76 609 94 0.49 0.066 0.23–1.05

LLFS_S MI All 449 32 3.07 2.1 · 10 - 3 1.50–6.28
CHF All 449 11 1.74 0.392 0.49–6.14
CA All 449 35 1.38 0.373 0.68–2.83
AF All 447 32 0.87 0.742 0.37–2.03

Note that the number of onsets of specific forms of diseases of
heart (HD) do not sum to the number of onsets of HD because the
same individual can have different forms of HD whereas only the
youngest age at onset is considered for a given individual.

Ntotal and NHD, the total number of genotyped individuals and the
number of onsets of diseases of heart (HD) among them, respectively;
RR, relative risk; CI, confidence interval; MI, myocardial infarction;
CHF, congestive heart failure; CA, coronary angioplasty; AF, atrial
fibrillation; LLFS_P, long-living participants of the Long Life Family
Study (LLFS); LLFS_O, offspring of the LLFS long-living individ-
uals; LLFS_S, spouses of the LLFS long-living individuals and
offspring.

Table 4. Relative Risks of Neurodegenerative

Disorders in the Genotyped Participants

of the Long Life Family Study

Sex Ntotal NND RR p 95% CI

Men 2080 22 2.16 0.134 0.79–5.93
Women 2546 33 1.76 0.212 0.73–4.28
Men and women 4626 55 1.98 0.046 1.01–3.86

Ntotal and NND, the total number of genotyped individuals and the
number of onsets of Alzheimer disease or dementia (ND) among
them, respectively; RR, relative risk; CI, confidence interval.
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and evolutionary constraints provide little support for this
assumption.41 As a result, one has to assume indirect
(conditional) linkage of genes with age-related traits.42 This
change in the paradigm from unconditional to conditional
risks requires a change in analytic strategies. That is, rather
than attempting to evaluate unconditional population genetic
risks, comprehensive analyses of the mechanisms that shape
the conditional risks of genes on age-related traits in a given
environment are required.43 Guided by this paradigm, we
extended our prior analyses of trade-offs in the effects of the
APOE e4 allele on major human diseases in the FHS,18,34

examining phenotypic mechanisms that can drive such
trade-offs in a specific population of the LLFS families
enriched for chances of exceptional longevity.

The e4 allele and risk of cancer

We found that long-living men carrying the e4 allele
might be protected against cancer at ages older than 75 years
(Table 1). A protective effect of the e4 allele against cancer
was also documented in two independent samples of geno-
typed participants of the original and offspring cohorts in the
FHS.18,34 The potentially protective effect in the LLFS is
concordant with findings in the FHS, not merely in the effect
direction, but also in two additional aspects, i.e., it is seen at
the same old ages and primarily in men. The role of the e4
allele in cancer in other groups of the LLFS participants is
uncertain largely due to insufficient numbers of cancer cases
in these groups of survivors.

The finding of the protective effect of the e4 allele against
cancer in men at the same old ages in different populations
has several implications. First, this finding suggests that ag-
ing-related processes can shape genetic effects on cancer.
Second, this cancer-protective mechanism is sex specific and
should be more pronounced in men than in women. Third,
this finding contributes to thoughts on pure genetic (deter-
ministic) and gene–environmental origins of age-related traits
(see the beginning of Discussion and Conclusions section).
Indeed, it suggests the existence of a cancer-protective ge-
netic mechanism that should be weakly sensitive to the en-
vironment, i.e., such a mechanism may have relatively wide
norm of genetic reaction to environmental exposures. This is
evident from the observation of the associations of the e4
allele with cancer in different populations and generations of
older men, i.e., the same generation of men in the FHS
original cohort and in the cohort of the LLFS long-living men
and offspring generation of men in the FHSO. Generations
are, particularly, a proxy for environmental exposures in
which individuals from these cohorts grew up. Age-sensi-
tivity of the observed protective effects suggests that such a
mechanism may be relevant to aging-related processes.

The e4 allele and risks of diseases of the heart

Long-living men appear to be also protected against
diseases of the heart at virtually the same ages as in the
case of cancer, i.e., at ages older than 76 years (Table 2).
This effect is concordant with the protective effect of the
e4 allele against cardiovascular diseases observed in a
more homogeneous subsample of the FHS original cohort
in terms of the effect direction and expression at the same
old ages.34 This result suggests that aging-related pro-
cesses can shape the effect of the e4 allele not only on

cancer but also on cardiovascular diseases. However, the
age-specific protective effect of the e4 allele was seen in
the LLFS men, whereas in the FHS it was seen in women.
These results suggest that mechanisms mediating age-
sensitive effects of the e4 allele on cardiovascular diseases
are less conserved than in the case of cancer, and they can
be modulated by sex. No reliable conclusions can be
drawn on the role of the e4 allele in the LLFS women and
male offspring, largely due to the limited number of dis-
ease cases.

The analyses show that protective effect of the e4 allele in
the LLFS long-living men is not associated with specific
heart pathology, but rather can be a superposition of pro-
tective effects against different forms of diseases of the heart
(Table 3). This result suggests the existence of a systemic
(disease non-specific) mechanism that can be involved in
regulation of not just one trait, but perhaps a major subset of
them.5,6 Indeed, although atherosclerosis can be a common
risk factor for MI, CHF, and CA, the other heart pathology,
AF, is typically due to another mechanism associated with
abnormal spreading of electrical signals in the heart. This
result is strengthened by the protective effect of the e4 allele
against such a pathology-distinct disease as cancer (see the
section above). Sensitivity of such a systemic protective
mechanism to age suggests its connection with aging-related
processes.

A fundamentally different effect of the e4 allele is ob-
served in male spouses. First, we observe a detrimental but
not protective (as in long-living men) effect. Second, this
detrimental effect is seen regardless of age at onset (Fig. 1C,
D). Third, this effect is primarily attributed to specific heart
pathology, i.e., MI (Table 3).

Qualitative differences in the observed effects of the e4
allele across the studied populations may reflect specifics of
these populations. Indeed, unlike the LLFS long-living men,
the LLFS male spouses were not selected for exceptional
longevity and, thus, they represented an ordinary population
as in other studies. Prior studies in various populations of
individuals not selected for their exceptional longevity
typically reported an adverse effect of the e4 allele on
coronary heart disease44,45 that was concordant with our
observations.

These results support the existence of qualitatively dif-
ferent forms of actions of the e4 allele on diseases of the
heart through disease-specific and systemic, likely aging-
related, mechanisms.

The e4 allele and onset of ND

Concordant with numerous studies on the role of the e4
allele in ND, the LLFS participants carrying the e4 allele are
at higher risks of ND than the non-e4 carriers. This result
should be interpreted with caution, however, because par-
ticipants’ recollection of their ages at onset of ND is less
accurate than that on CVD and cancer.

The role of the e4 allele in health span

Thus, the results of our analyses show a complex role of
the APOE e4 allele in health span when the same e4 allele
can diminish risks of cancer and diseases of the heart, and,
depending on the LLFS population, confer risks of diseases
of the heart and neurological disorders. This complexity
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highlights trade-offs in the effect of the e4 allele on risks of
major human diseases. Accordingly, this result extends a
finding of genetic trade-offs in the FHS18,34 to surviving
individuals who participated in the LLFS. Potential mech-
anisms of genetic trade-offs are discussed in references 18,
34, and 46.

Our results contribute to the discussion that the traditional
concept regarding replication of association of the same
allele, in the same direction with the same aging-related trait
in different populations, has inherent limitations.41,47–51

Additionally, our results support the view that more insight
into the genetic origin of traits in late life and analyses of
mechanisms linking genes to such traits are needed.

Our analyses suggest that the e4 allele is associated with
risks of the selected diseases through two different mecha-
nisms. One mechanism is likely associated with biochemi-
cal genetic basis of specific traits (conferring risks of MI and
ND), which is traditionally the most-studied mechanism.
The analyses show that this disease-specific mechanism
is not sensitive to ages at onset, particularly of MI, in
this study.

A key feature of the other mechanism is its age-sensitivity
when the protective effect of the e4 allele against both
cancer and diseases of the heart becomes expressed at the
same old ages of mid-70s and older. This mechanism is
likely relevant to aging-related processes and potentially can
explain the risks of subsets of diseases in the elderly, in-
cluding various forms of diseases of the heart and cancer.

Both of these mechanisms, i.e., disease-specific and sys-
temic (aging-related), are mostly expressed in LLFS men.
Importantly, the protective aging-related mechanism is seen
in long-living men, whereas a detrimental MI-specific
mechanism is seen in the population of male spouses who
have not been selected for their chances of exceptional
survival. This finding suggests that individuals with excep-
tional longevity can have protective mechanisms assuring
their survival to old ages.52 Given that men have a shorter
life span compared to women, men surviving to extreme
ages should have male-specific protective mechanism(s).
Exceptional survival of men in the LLFS may be assured
by such mechanism(s) because these mechanism(s) can
cluster in specially selected long-living LLFS families. Our
results suggest that long-living women in the LLFS may
not need to have the APOE-related protective mechanism
to live long lives. Then, the findings of the potential pro-
tective role of the e4 allele against cancer and diseases of
the heart in long-living men may highlight sexual dimor-
phism in longevity-assuring mechanism(s). Sexual dimor-
phism in the observed effects of the APOE e4 allele can be
linked to differential hormonal and insulin regulation in
men and women.53

We should underline that the LLFS is a family-based
cohort study examining the genetic and non-genetic factors
associated with exceptional familial longevity (see Meth-
ods). Long-lived individuals, their siblings, and their off-
spring and spouses were recruited for an examination that
characterized key intermediate phenotypes of longevity,
including major chronic diseases, risk factors, and physical
and cognitive function. Therefore, the LLFS cohort is a
highly selected group of exceptional families and not rep-
resentative of the overall general population. Thus, caution
is needed when interpreting and extrapolating these results

to other populations because they have limited generaliz-
ability under the hypothesis of ‘‘pure genetic’’ origin of
complex traits. In fact, in our case of retrospective data, the
observed associations are characteristic for individuals who
survived until enrollment into the LLFS despite contracting
diseases of the heart or cancer.
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