316 research outputs found

    New insights on COPD imaging via CT and MRI

    Get PDF
    Multidetector-row computed tomography (MDCT) can be used to quantify morphological features and investigate structure/function relationship in COPD. This approach allows a phenotypical definition of COPD patients, and might improve our understanding of disease pathogenesis and suggest new therapeutical options. In recent years, magnetic resonance imaging (MRI) has also become potentially suitable for the assessment of ventilation, perfusion and respiratory mechanics. This review focuses on the established clinical applications of CT, and novel CT and MRI techniques, which may prove valuable in evaluating the structural and functional damage in COPD

    Relationship between fibroblastic foci profusion and high resolution CT morphology in fibrotic lung disease

    Get PDF
    Background Fibroblastic foci profusion on histopathology and severity of traction bronchiectasis on highresolution computed tomography (HRCT) have been shown to be predictors of mortality in patients with idiopathic pulmonary fibrosis (IPF). The aim of this study was to investigate the relationship between fibroblastic foci (FF) profusion and HRCT patterns in patients with a histopathologic diagnosis of usual interstitial pneumonia (UIP), fibrotic non-specific interstitial pneumonia (NSIP) and chronic hypersensitivity pneumonitis (CHP). Methods The HRCT scans of 162 patients with a histopathologic diagnosis of UIP or fibrotic NSIP (n = 162) were scored on extent of groundglass opacification, reticulation, honeycombing, emphysema and severity of traction bronchiectasis. For each patient, a fibroblastic foci profusion score based on histopathologic appearances was assigned. Relationships between extent of fibroblastic foci and individual HRCT patterns were investigated using univariate correlation analysis and multivariate linear regression. Results Increasing extent of reticulation (P < 0.0001) and increasing severity of traction bronchiectasis (P < 0.0001) were independently associated with increasing FF score within the entire cohort. Within individual multidisciplinary team diagnosis subgroups, the only significant independent association with FF score was severity of traction bronchiectasis in patients with idiopathic pulmonary fibrosis (IPF)/UIP (n = 66, r2 = 0.19, P < 0.0001) and patients with chronic hypersensitivity pneumonitis (CHP) (n = 49, r2 = 0.45, P < 0.0001). Furthermore, FF score had the strongest association with severity of traction bronchiectasis in patients with IPF (r2 = 0.34, P < 0.0001) and CHP (r2 = 0.35, P < 0.0001). There was no correlation between FF score and severity of traction bronchiectasis in patients with fibrotic NSIP. Global disease extent had the strongest association with severity of traction bronchiectasis in patients with fibrotic NSIP (r2 = 0.58, P < 0.0001). Conclusion In patients with fibrotic lung disease, profusion of fibroblastic foci is strikingly related to the severity of traction bronchiectasis, particularly in IPF and CHP. This may explain the growing evidence that traction bronchiectasis is a predictor of mortality in several fibrotic lung diseases

    The Role of Chest Imaging in Patient Management During the COVID-19 Pandemic: A Multinational Consensus Statement From the Fleischner Society.

    Get PDF
    With more than 900,000 confirmed cases worldwide and nearly 50,000 deaths during the first three months of 2020, the COVID-19 pandemic has emerged as an unprecedented healthcare crisis. The spread of COVID-19 has been heterogeneous, resulting in some regions having sporadic transmission and relatively few hospitalized patients with COVID-19 and others having community transmission that has led to overwhelming numbers of severe cases. For these regions, healthcare delivery has been disrupted and compromised by critical resource constraints in diagnostic testing, hospital beds, ventilators, and healthcare workers who have fallen ill to the virus exacerbated by shortages of personal protective equipment. While mild cases mimic common upper respiratory viral infections, respiratory dysfunction becomes the principal source of morbidity and mortality as the disease advances. Thoracic imaging with chest radiography (CXR) and computed tomography (CT) are key tools for pulmonary disease diagnosis and management, but their role in the management of COVID-19 has not been considered within the multivariable context of the severity of respiratory disease, pre-test probability, risk factors for disease progression, and critical resource constraints. To address this deficit, a multidisciplinary panel comprised principally of radiologists and pulmonologists from 10 countries with experience managing COVID-19 patients across a spectrum of healthcare environments evaluated the utility of imaging within three scenarios representing varying risk factors, community conditions, and resource constraints. Fourteen key questions, corresponding to 11 decision points within the three scenarios and three additional clinical situations, were rated by the panel based upon the anticipated value of the information that thoracic imaging would be expected to provide. The results were aggregated, resulting in five main and three additional recommendations intended to guide medical practitioners in the use of CXR and CT in the management of COVID-19

    Transient asymptomatic pulmonary opacities and interstitial lung disease in EGFR-mutated non-small cell lung cancer treated with osimertinib

    Get PDF
    Introduction: Osimertinib is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) approved as first-line therapy for advanced EGFR-mutated non-small cell lung cancer (NSCLC). Some osimertinib-related interstitial lung diseases (ILDs) were shown to be transient, called transient asymptomatic pulmonary opacities (TAPO)—clinically benign pulmonary opacities that resolve despite continued osimertinib treatment—and are not associated with the clinical manifestations of typical TKI-associated ILDs. Methods: In this multicentric study, we retrospectively analyzed 92 patients with EGFR-mutated NSCLC treated with osimertinib. Computed tomography (CT) examinations were reviewed by two radiologists and TAPO were classified according to radiologic pattern. We also analyzed associations between TAPO and patients’ clinical variables and compared clinical outcomes (time to treatment failure and overall survival) for TAPO-positive and TAPO-negative groups. Results: TAPO were found in 18/92 patients (19.6%), with a median follow-up of 114 weeks. Median onset time was 16 weeks (range 6–80) and median duration time 14 weeks (range 8–37). The most common radiologic pattern was focal ground-glass opacity (54.5%). We did not find any individual clinical variable significantly associated with the onset of TAPO or significant difference in clinical outcomes between TAPO-positive and TAPO-negative groups. Conclusions: TAPO are benign pulmonary findings observed in patients treated with osimertinib. TAPO variability in terms of CT features can hinder the differential diagnosis with either osimertinib-related mild ILD or tumor progression. However, because TAPO are asymptomatic, it could be reasonable to continue therapy and verify the resolution of the CT findings at follow-up in selected cases

    European Respiratory Society Statement on Long COVID-19 Follow-Up

    Get PDF
    Patients diagnosed with COVID-19 associated with SARS-CoV-2 infection frequently experience symptom burden post-acute infection or post-hospitalisation. We aim to identify optimal strategies for follow-up care that may positively impact the patient's quality-of-life (QOL).A European Respiratory Society (ERS) Task Force (TF) convened and prioritised eight clinical questions. A targeted search of the literature defined the time line of long COVID-19 as one to six months post infection and identified clinical evidence in the follow-up of patients. Studies meeting the inclusion criteria report an association of characteristics of acute infection with persistent symptoms, thromboembolic events in the follow-up period and evaluations of pulmonary physiology and imaging. Importantly, this statement reviews QOL consequences, symptom burden, disability and home care follow-up. Overall, the evidence for follow-up care for patients with long COVID-19 is limited
    corecore