83 research outputs found

    QseC controls biofilm formation of non-typeable Haemophilus influenzae in addition to an AI-2-dependent mechanism.

    Get PDF
    Non-typeable Haemophilus influenzae (NTHi) is a common pathogen associated with diseases such as acute otitis media or exacerbations in patients with chronic obstructive pulmonary disease. The biofilm-forming capability substantially contributes to the persistence of NTHi. However, the regulation of biofilm formation is not completely understood. Quorum sensing regulated by autoinducer-2 produced by luxS is until now the only described regulatory mechanism. In this study, we show that the two-component signalling system QseB/C is involved in the biofilm formation of NTHi in vitro. An isogenic NTHi mutant of qseC (Hi3655KR2) showed a significant decrease in biofilm formation under static and semi-static conditions as assessed by crystal violet staining. In addition, under constant flow conditions, Hi3655KR2 formed less biofilm after 48h. The biofilm defects were irrespective of autoinducer-2 levels. Hence, here we suggest for the first time a regulatory circuit in NTHi, which controls biofilm formation by mechanisms other than or in addition to luxS-dependent factors

    Characterization of MdpS: an in-depth analysis of a MUC5B-degrading protease from Streptococcus oralis

    Get PDF
    Oral biofilms, comprising hundreds of bacteria and other microorganisms on oral mucosal and dental surfaces, play a central role in oral health and disease dynamics. Streptococcus oralis, a key constituent of these biofilms, contributes significantly to the formation of which, serving as an early colonizer and microcolony scaffold. The interaction between S. oralis and the orally predominant mucin, MUC5B, is pivotal in biofilm development, yet the mechanism underlying MUC5B degradation remains poorly understood. This study introduces MdpS (Mucin Degrading Protease from Streptococcus oralis), a protease that extensively hydrolyses MUC5B and offers an insight into its evolutionary conservation, physicochemical properties, and substrate- and amino acid specificity. MdpS exhibits high sequence conservation within the species and also explicitly among early biofilm colonizing streptococci. It is a calcium or magnesium dependent serine protease with strict physicochemical preferences, including narrow pH and temperature tolerance, and high sensitivity to increasing concentrations of sodium chloride and reducing agents. Furthermore, MdpS primarily hydrolyzes proteins with O-glycans, but also shows activity toward immunoglobulins IgA1/2 and IgM, suggesting potential immunomodulatory effects. Significantly, MdpS extensively degrades MUC5B in the N- and C-terminal domains, emphasizing its role in mucin degradation, with implications for carbon and nitrogen sequestration for S. oralis or oral biofilm cross-feeding. Moreover, depending on substrate glycosylation, the amino acids serine, threonine or cysteine triggers the enzymatic action. Understanding the interplay between S. oralis and MUC5B, facilitated by MdpS, has significant implications for the management of a healthy eubiotic oral microenvironment, offering potential targets for interventions aimed at modulating oral biofilm composition and succession. Additionally, since MdpS does not rely on O-glycan removal prior to extensive peptide backbone hydrolysis, the MdpS data challenges the current model of MUC5B degradation. These findings emphasize the necessity for further research in this field

    Salivary gel-forming mucin MUC5B : a nutrient for dental plaque bacteria

    No full text
    INTRODUCTION: Model systems with oral bacteria from dental plaque have demonstrated that the utilization of complex glycoproteins as a food source cannot be undertaken by single species but requires concerted degradation by a multi-species consortium, with each member contributing one or a few hydrolytic enzymes. Unlike previous studies, the aim of the present investigation was to explore the ability of fresh dental plaque to degrade salivary mucin, MUC5B, isolated by methods designed to retain intact the natural polymeric structure and physiological conformation, in an attempt to mimic the naturally occurring interaction between the oral microbiota and salivary mucins. METHODS: Human salivary MUC5B was isolated from whole saliva by density-gradient centrifugation and incubated with freshly isolated supragingival dental plaque with samples subjected to fluorescent staining for viability and metabolic activity. In addition, the degradation of MUC5B oligosaccharide side chains was studied using a lectin assay, recognizing three different carbohydrate epitopes commonly found on mucin oligosaccharide side chains. RESULTS: The addition of purified salivary MUC5B elicited a strong metabolic response from the biofilm cells, whereas individual strains of Streptococcus oralis and Streptococcus gordonii isolated from the same plaque were not able to utilize the MUC5B. The degradation of terminal saccharide moieties on the MUC5B was demonstrated by a marked decrease in both sialic acid and fucose reactivity. CONCLUSION: These results have shown that dental plaque is capable of utilizing human salivary MUC5B as a nutrient source, a process possibly requiring the synergistic degradation of the molecule by a consortium of oral bacteria in the plaque community

    Acid Tolerance of Biofilm Cells of Streptococcus mutans▿

    No full text
    Streptococcus mutans, a member of the dental plaque community, has been shown to be involved in the carious process. Cells of S. mutans induce an acid tolerance response (ATR) when exposed to sublethal pH values that enhances their survival at a lower pH. Mature biofilm cells are more resistant to acid stress than planktonic cells. We were interested in studying the acid tolerance and ATR-inducing ability of newly adhered biofilm cells of S. mutans. All experiments were carried out using flow-cell systems, with acid tolerance tested by exposing 3-h biofilm cells to pH 3.0 for 2 h and counting the number of survivors by plating on blood agar. Acid adaptability experiments were conducted by exposing biofilm cells to pH 5.5 for 3 h and then lowering the pH to 3.5 for 30 min. The viability of the cells was assessed by staining the cells with LIVE/DEAD BacLight viability stain. Three-hour biofilm cells of three different strains of S. mutans were between 820- and 70,000-fold more acid tolerant than corresponding planktonic cells. These strains also induced an ATR that enhanced the viability at pH 3.5. The presence of fluoride (0.5 M) inhibited the induction of an ATR, with 77% fewer viable cells at pH 3.5 as a consequence. Our data suggest that adhesion to a surface is an important step in the development of acid tolerance in biofilm cells and that different strains of S. mutans possess different degrees of acid tolerance and ability to induce an ATR

    The Solo Taxonomi : a Tool to Empower Student Learning

    No full text
    In the “Learning Society” in which we live , the capacity for ‘learning to learn’ is important. With PBL as an educational approach we try to design learning environments, which facilitate and support students in their learning to learn and use of tools for meaning making and reality construction as well as making them eager to understand. But how do we assess students’ ability to adopt active strategies and how do we evaluate our programme on these issues

    Microbiota in dentine caries cultivable on pH-selective agars

    No full text
    Objective: To investigate the acid tolerant microflora at different levels in established dentine caries lesions using solid pH-selective media, as acid stress might be a major selective determinant in dentine caries ecosystems. Methods: Primary dentine caries lesions (vital teeth, no symptoms) in five patients were sampled aseptically with a rose-bur at three levels: superficially, in the centre and the bottom of the lesion, when it was considered clinically caries free using visual and tactile criteria. Samples were incubated on neutral (blood agar) and pH-selective (Todd-Hewitt agar buffered to pH 4.0, 4.5, 5.0, 5.5) agar. Numbers of colony-forming units (cfu) were determined and colonies were characterized morphologically and with enzymatic- and sugar fermentation tests. Results: The total numbers of bacteria recovered from the pH-neutral agars did not decrease significantly with lesion depth (median blood agar: 6.3×103 superficially; 2.2×103 bottom) whereas cfu recovery from low pH agars decreased with increasing agar acidity. The composition of the aciduric microflora varied both between subjects and between sample sites within the lesions. Gram-positive cocci were most abundant, but with lower pH and deeper sampling sites, the numbers of lactobacilli and other Gram-positive rods increased. Mutans streptococci were found at all sampling depths. S. anginosus, S. constellatus, S. crista, S. gordonii, S. intermedius and S. sanguis were found less frequently. Conclusions: The study clearly indicates that many different microorganisms can be recovered on pH 5.5 agars and thus survive in low pH environments. pH 5.5 is quite sufficient to moderately demineralize dentine, and aciduric microorganisms should thus have the potential to contribute to the dentine caries process. Approved by the ethical committee at Lund University. Funded by Faculty grants

    Salivary pellicles on titanium and their effect on metabolic activity in Streptococcus oralis

    Get PDF
    BACKGROUND: Titanium implants in the oral cavity are covered with a saliva-derived pellicle to which early colonizing microorganisms such as Streptococcus oralis can bind. The protein profiles of salivary pellicles on titanium have not been well characterized and the proteins of importance for binding are thus unknown. Biofilm bacteria exhibit different phenotypes from their planktonic counterparts and contact with salivary proteins may be one factor contributing to the induction of changes in physiology. We have characterized salivary pellicles from titanium surfaces and investigated how contact with uncoated and saliva-coated titanium surfaces affects metabolic activity in adherent cells of S. oralis. METHODS: Salivary pellicles on smooth titanium surfaces were desorbed and these, as well as purified human saliva, were subjected to two-dimensional gel electrophoresis and mass spectroscopy. A parallel plate flow-cell model was used to study binding of a fresh isolate of S. oralis to uncoated and saliva-coated titanium surfaces. Metabolic activity was assessed using the BacLight CTC Vitality Kit and confocal scanning laser microscopy. Experiments were carried out in triplicate and the results analyzed using Student's t-test or ANOVA. RESULTS: Secretory IgA, α-amylase and cystatins were identified as dominant proteins in the salivary pellicles. Selective adsorption of proteins was demonstrated by the enrichment of prolactin-inducible protein and absence of zinc-α₂-glycoprotein relative to saliva. Adherence of S. oralis to titanium led to an up-regulation of metabolic activity in the population after 2 hours. In the presence of a salivary pellicle, this effect was enhanced and sustained over the following 22 hour period. CONCLUSIONS: We have shown that adherence to smooth titanium surfaces under flow causes an up-regulation of metabolic activity in the early oral colonizer S. oralis, most likely as part of an adaptation to the biofilm mode of life. The effect was enhanced by a salivary pellicle containing sIgA, α-amylase, cystatins and prolactin-inducible protein which was, for the first time, identified as an abundant component of salivary pellicles on titanium. Further studies are needed to clarify the mechanisms underlying the effect of surface contact on metabolic activity as well as to identify the salivary proteins responsible for enhancing the effect

    Parvimonas micra

    No full text
    corecore