275 research outputs found

    Free-breathing Pulmonary (1)H and Hyperpolarized (3)He MRI: Comparison in COPD and Bronchiectasis.

    Get PDF
    RATIONALE AND OBJECTIVES: In this proof-of-concept demonstration, we aimed to quantitatively and qualitatively compare pulmonary ventilation abnormalities derived from Fourier decomposition of free-breathing (1)H magnetic resonance imaging (FDMRI) to hyperpolarized (3)He MRI in subjects with chronic obstructive pulmonary disease (COPD) and bronchiectasis. MATERIALS AND METHODS: All subjects provided written informed consent to a protocol approved by a local research ethics board and Health, Canada, and they underwent MRI, computed tomography (CT), spirometry, and plethysmography during a single 2-hour visit. Semiautomated segmentation was used to generate ventilation defect measurements derived from FDMRI and (3)He MRI, and these were compared using analysis of variance and Pearson correlations. RESULTS: Twenty-six subjects were evaluated including 12 COPD subjects (67 ± 9 years) and 14 bronchiectasis subjects (70 ± 11 years). For COPD subjects, FDMRI and (3)He MRI ventilation defect percent (VDP) was 7 ± 6% and 24 ± 14%, respectively (P \u3c .001; bias = -16 ± 9%). In COPD subjects, FDMRI was significantly correlated with (3)He MRI VDP (r = .88; P = .0001), (3)He MRI apparent diffusion coefficient (r = .71; P \u3c .05), airways resistance (r = .60; P \u3c .05), and RA950 (r = .80; P \u3c .01). In subjects with bronchiectasis, FDMRI VDP (5 ± 3%) and (3)He MRI VDP (18 ± 9%) were significantly different (P \u3c .001) and not correlated (P \u3e .05). The Dice similarity coefficient (DSC) for FDMRI and (3)He MRI ventilation was 86 ± 7% for COPD and 86 ± 4% for bronchiectasis subjects (P \u3e .05); the DSC for FDMRI ventilation defects and CT RA950 was 19 ± 20% in COPD and 2 ± 3% in bronchiectasis subjects (P \u3c .01). CONCLUSIONS: FDMRI and (3)He MRI VDP were strongly related in COPD but not in bronchiectasis subjects. In COPD only, FDMRI ventilation defects were spatially related with (3)He ventilation defects and emphysema

    Free-breathing Pulmonary MR Imaging to Quantify Regional Ventilation

    Get PDF
    Purpose: To measure regional specific ventilation with free-breathing hydrogen 1 (1H) magnetic resonance (MR) imaging without exogenous contrast material and to investigate correlations with hyperpolarized helium 3 (3He) MR imaging and pulmonary function test measurements in healthy volunteers and patients with asthma. Materials and Methods: Subjects underwent free-breathing 1H and static breath-hold hyperpolarized 3He MR imaging as well as spirometry and plethysmography; participants were consecutively recruited between January and June 2017. Free-breathing 1H MR imaging was performed with an optimized balanced steady-state free-precession sequence; images were retrospectively grouped into tidal inspiration or tidal expiration volumes with exponentially weighted phase interpolation. MR imaging volumes were coregistered by using optical flow deformable registration to generate 1H MR imaging-derived specific ventilation maps. Hyperpolarized 3He MR imaging- and 1H MR imaging-derived specific ventilation maps were coregistered to quantify regional specific ventilation within hyperpolarized 3He MR imaging ventilation masks. Differences between groups were determined with the Mann-Whitney test and relationships were determined with Spearman (ρ) correlation coefficients. Statistical analyses were performed with software. Results: Thirty subjects (median age: 50 years; interquartile range [IQR]: 30 years), including 23 with asthma and seven healthy volunteers, were evaluated. Both 1H MR imaging-derived specific ventilation and hyperpolarized 3He MR imaging-derived ventilation percentage were significantly greater in healthy volunteers than in patients with asthma (specific ventilation: 0.14 [IQR: 0.05] vs 0.08 [IQR: 0.06], respectively, P \u3c .0001; ventilation percentage: 99% [IQR: 1%] vs 94% [IQR: 5%], P \u3c .0001). For all subjects, 1H MR imaging-derived specific ventilation correlated with plethysmography-derived specific ventilation (ρ = 0.54, P = .002) and hyperpolarized 3He MR imaging-derived ventilation percentage (ρ = 0.67, P \u3c .0001) as well as with forced expiratory volume in 1 second (FEV1) (ρ = 0.65, P = .0001), ratio of FEV1 to forced vital capacity (ρ = 0.75, P \u3c .0001), ratio of residual volume to total lung capacity (ρ = -0.68, P \u3c .0001), and airway resistance (ρ = -0.51, P = .004). 1H MR imaging-derived specific ventilation was significantly greater in the gravitational-dependent versus nondependent lung in healthy subjects (P = .02) but not in patients with asthma (P = .1). In patients with asthma, coregistered 1H MR imaging specific ventilation and hyperpolarized 3He MR imaging maps showed that specific ventilation was diminished in corresponding 3He MR imaging ventilation defects (0.05 ± 0.04) compared with well-ventilated regions (0.09 ± 0.05) (P \u3c .0001). Conclusion: 1H MR imaging-derived specific ventilation correlated with plethysmography-derived specific ventilation and ventilation defects seen by using hyperpolarized 3He MR imaging. © RSNA, 2018 Online supplemental material is available for this article

    Insect biomass shows a stronger decrease than species richness along urban gradients

    Get PDF
    1. Anthropogenic land cover change is a major driver of biodiversity loss, with urbanisation and farmland practices responsible for some of the most drastic modifications of natural habitats. The relative importance of different land covers for shaping insect communities, however, is unclear. 2. This study examines the effect of urban and farmland covers, along with land cover heterogeneity, at a landscape scale on species richness, evenness and biomass of flying insects using citizen science carnet sampling across Denmark. 3. Increasing urban cover had a negative effect on insect richness but an even stronger negative effect on biomass. Increased land cover heterogeneity did not mitigate the negative effect of urban cover. Insect assemblages also became more even with increased urban cover. Farmland cover had no significant effect on insect richness, evenness or biomass. 4. Based on our findings, the urban cover has a strong negative impact on insect communities, indicating that urbanisation could contribute to insect declines. Moreover, our findings indicate that insect loss occurs more through loss of biomass than loss of species, which may affect the ecosystem-level consequences of urbanisation

    MMP-28 as a regulator of myelination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Matrix metalloproteinase-28 (MMP-28) is a poorly understood member of the matrix metalloproteinase family. Metalloproteinases are important mediators in the development of the nervous system and can contribute to the maturation of the neural micro-environment.</p> <p>Results</p> <p>MMP-28 added to myelinating rat dorsal root ganglion (DRG) co-cultures reduces myelination and two antibodies targeted to MMP-28 (pAb180 and pAb183) are capable of binding MMP-28 and inhibiting its activity in a dose-dependent manner. Addition of 30 nM pAb180 or pAb183 to rat DRG cultures resulted in the 2.6 and 4.8 fold enhancement of myelination respectively while addition of MMP-28 to DRG co-cultures resulted in enhanced MAPK, ErbB2 and ErbB3 phosphorylation. MMP-28 protein expression was increased within demyelinated lesions of mouse experimental autoimmune encephalitis (EAE) and human multiple sclerosis lesions compared to surrounding normal tissue.</p> <p>Conclusion</p> <p>MMP-28 is upregulated in conditions of demyelination in vivo, induces signaling in vitro consistent with myelination inhibition and, neutralization of MMP-28 activity can enhance myelination in vitro. These results suggest inhibition of MMP-28 may be beneficial under conditions of dysmyelination.</p

    Use of antihypertensive medications in pregnancy and the risk of adverse perinatal outcomes: McMaster Outcome Study of Hypertension In Pregnancy 2 (MOS HIP 2)

    Get PDF
    BACKGROUND: Uncertainty remains about the potential harmful effects of antihypertensive therapy on the developing fetus, especially for beta-blockers (βb). METHODS: We prospectively enrolled all singleton women with a blood pressure ≥ 140/90 mm Hg during pregnancy. The main analysis included 1948 women with all forms of hypertension and compared the use of βb drugs, non-βb drugs or a combination of both, to no treatment. The primary study outcome was a composite of the diseases of prematurity, need for assisted ventilation for greater than 1 day, or perinatal death. A sub-group analysis evaluated the four treatment options among 583 singleton women with chronic hypertension before 20 weeks gestation. RESULTS: In the main analysis, no association was observed between βb use and the primary composite outcome [adjusted odds ratio (OR) 1.4, 95% CI 0.9–2.2], while an association was seen with non-βb therapy (OR 5.0, 95% CI 2.6–9.6) and combination therapy (OR 2.9, 95% CI 1.8–4.7). In the sub-group of 583 women with hypertension before 20 weeks, use of a non-βb drug (OR 4.9, 95% CI 1.7–14.2) or combination therapy (OR 2.9. 95% CI 1.1–7.7) was significantly associated with the primary composite outcome, while βb monotherapy was not (OR 1.4, 95% CI 0.6–3.4). CONCLUSIONS: Maternal use of antihypertensive medications other than βbs was associated with both major perinatal morbidity and mortality, while βb monotherapy was not. The combined use of βb and non-βb medications demonstrated the strongest association. Before definitive conclusions can be drawn, a large multicentre randomized controlled trial is needed to address the issues of both maternal efficacy and fetal safety with the use of one or more antihypertensive agents in pregnancy

    Supine posture changes lung volumes and increases ventilation heterogeneity in cystic fibrosis

    Get PDF
    INTRODUCTION: Lung Clearance Index (LCI) is recognised as an early marker of cystic fibrosis (CF) lung disease. The effect of posture on LCI however is important when considering longitudinal measurements from infancy and when comparing LCI to imaging studies. METHODS: 35 children with CF and 28 healthy controls (HC) were assessed. Multiple breath washout (MBW) was performed both sitting and supine in triplicate and analysed for LCI, Scond, Sacin, and lung volumes. These values were also corrected for the Fowler dead-space to create 'alveolar' indices. RESULTS: From sitting to supine there was a significant increase in LCI and a significant decrease in FRC for both CF and HC (p<0.01). LCI, when adjusted to estimate 'alveolar' LCI (LCIalv), increased the magnitude of change with posture for both LCIalv and FRCalv in both groups, with a greater effect of change in lung volume in HC compared with children with CF. The % change in LCIalv for all subjects correlated significantly with lung volume % changes, most notably tidal volume/functional residual capacity (Vtalv/FRCalv (r = 0.54,p<0.001)). CONCLUSION: There is a significant increase in LCI from sitting to supine, which we believe to be in part due to changes in lung volume and also increasing ventilation heterogeneity related to posture. This may have implications in longitudinal measurements from infancy to older childhood and for studies comparing supine imaging methods to LCI
    corecore