14 research outputs found

    Cellular response to 5-fluorouracil (5-FU) in 5-FU-resistant colon cancer cell lines during treatment and recovery

    Get PDF
    BACKGROUND: Treatment of cells with the anti-cancer drug 5-fluorouracil (5-FU) causes DNA damage, which in turn affects cell proliferation and survival. Two stable wild-type TP53 5-FU-resistant cell lines, ContinB and ContinD, generated from the HCT116 colon cancer cell line, demonstrate moderate and strong resistance to 5-FU, respectively, markedly-reduced levels of 5-FU-induced apoptosis, and alterations in expression levels of a number of key cell cycle- and apoptosis-regulatory genes as a result of resistance development. The aim of the present study was to determine potential differential responses to 8 and 24-hour 5-FU treatment in these resistant cell lines. We assessed levels of 5-FU uptake into DNA, cell cycle effects and apoptosis induction throughout treatment and recovery periods for each cell line, and alterations in expression levels of DNA damage response-, cell cycle- and apoptosis-regulatory genes in response to short-term drug exposure. RESULTS: 5-FU treatment for 24 hours resulted in S phase arrests, p53 accumulation, up-regulation of p53-target genes on DNA damage response (ATF3, GADD34, GADD45A, PCNA), cell cycle-regulatory (CDKN1A), and apoptosis-regulatory pathways (FAS), and apoptosis induction in the parental and resistant cell lines. Levels of 5-FU incorporation into DNA were similar for the cell lines. The pattern of cell cycle progression during recovery demonstrated consistently that the 5-FU-resistant cell lines had the smallest S phase fractions and the largest G(2)(/M) fractions. The strongly 5-FU-resistant ContinD cell line had the smallest S phase arrests, the lowest CDKN1A levels, and the lowest levels of 5-FU-induced apoptosis throughout the treatment and recovery periods, and the fastest recovery of exponential growth (10 days) compared to the other two cell lines. The moderately 5-FU-resistant ContinB cell line had comparatively lower apoptotic levels than the parental cells during treatment and recovery periods and a recovery time of 22 days. Mitotic activity ceased in response to drug treatment for all cell lines, consistent with down-regulation of mitosis-regulatory genes. Differential expression in response to 5-FU treatment was demonstrated for genes involved in regulation of nucleotide binding/metabolism (ATAD2, GNL2, GNL3, MATR3), amino acid metabolism (AHCY, GSS, IVD, OAT), cytoskeleton organization (KRT7, KRT8, KRT19, MAST1), transport (MTCH1, NCBP1, SNAPAP, VPS52), and oxygen metabolism (COX5A, COX7C). CONCLUSION: Our gene expression data suggest that altered regulation of nucleotide metabolism, amino acid metabolism, cytoskeleton organization, transport, and oxygen metabolism may underlie the differential resistance to 5-FU seen in these cell lines. The contributory roles to 5-FU resistance of some of the affected genes on these pathways will be assessed in future studies

    Profound influence of microarray scanner characteristics on gene expression ratios: analysis and procedure for correction

    Get PDF
    BACKGROUND: High throughput gene expression data from spotted cDNA microarrays are collected by scanning the signal intensities of the corresponding spots by dedicated fluorescence scanners. The major scanner settings for increasing the spot intensities are the laser power and the voltage of the photomultiplier tube (PMT). It is required that the expression ratios are independent of these settings. We have investigated the relationships between PMT voltage, spot intensities, and expression ratios for different scanners, in order to define an optimal scanning procedure. RESULTS: All scanners showed a limited intensity range from 200 to 50 000 (mean spot intensity), for which the expression ratios were independent of PMT voltage. This usable intensity range was considerably less than the maximum detection range of the PMTs. The use of spot and background intensities outside this range led to errors in the ratios. The errors at high intensities were caused by saturation of pixel intensities within the spots. An algorithm was developed to correct the intensities of these spots, and, hence, extend the upper limit of the usable intensity range. CONCLUSIONS: It is suggested that the PMT voltage should be increased to avoid intensities of the weakest spots below the usable range, allowing the brightest spots to reach the level of saturation. Subsequently, a second set of images should be acquired with a lower PMT setting such that no pixels are in saturation. Reliable data for spots with saturation in the first set of images can easily be extracted from the second set of images by the use of our algorithm. This procedure would lead to an increase in the accuracy of the data and in the number of data points achieved in each experiment compared to traditional procedures

    Genome-wide estimation of transcript concentrations from spotted cDNA microarray data

    Get PDF
    A method providing absolute transcript concentrations from spotted microarray intensity data is presented. Number of transcripts per µg total RNA, mRNA or per cell, are obtained for each gene, enabling comparisons of transcript levels within and between tissues. The method is based on Bayesian statistical modelling incorporating available information about the experiment from target preparation to image analysis, leading to realistically large confidence intervals for estimated concentrations. The method was validated in experiments using transcripts at known concentrations, showing accuracy and reproducibility of estimated concentrations, which were also in excellent agreement with results from quantitative real-time PCR. We determined the concentration for 10 157 genes in cervix cancers and a pool of cancer cell lines and found values in the range of 10(5)–10(10) transcripts per µg total RNA. The precision of our estimates was sufficiently high to detect significant concentration differences between two tumours and between different genes within the same tumour, comparisons that are not possible with standard intensity ratios. Our method can be used to explore the regulation of pathways and to develop individualized therapies, based on absolute transcript concentrations. It can be applied broadly, facilitating the construction of the transcriptome, continuously updating it by integrating future data

    Gene expressions and copy numbers associated with metastatic phenotypes of uterine cervical cancer

    Get PDF
    BACKGROUND: A better understanding of the development of metastatic disease and the identification of molecular markers for cancer spread would be useful for the design of improved treatment strategies. This study was conducted to identify gene expressions associated with metastatic phenotypes of locally advanced cervical carcinomas and investigate whether gains or losses of these genes could play a role in regulation of the transcripts. Gene expressions and copy number changes were determined in primary tumors from 29 patients with and 19 without diagnosed lymph node metastases by use of cDNA and genomic microarray techniques, respectively. RESULTS: Thirty-one genes that differed in expression between the node positive and negative tumors were identified. Expressions of eight of these genes (MRPL11, CKS2, PDK2, MRPS23, MSN, TBX3, KLF3, LSM3) correlated with progression free survival in univariate analysis and were therefore more strongly associated with metastatic phenotypes than the others. Immunohistochemistry data of CKS2 and MSN showed similar relationships to survival. The prognostic genes clustered into two groups, suggesting two major metastatic phenotypes. One group was associated with rapid proliferation, oxidative phosphorylation, invasiveness, and tumor size (MRPS23, MRPL11, CKS2, LSM3, TBX3, MSN) and another with hypoxia tolerance, anaerobic metabolism, and high lactate content (PDK2, KLF3). Multivariate analysis identified tumor volume and PDK2 expression as independent prognostic variables. Gene copy number changes of the differentially expressed genes were not frequent, but correlated with the expression level for seven genes, including MRPS23, MSN, and LSM3. CONCLUSION: Gene expressions associated with known metastatic phenotypes of cervical cancers were identified. Our findings may indicate molecular mechanisms underlying development of these phenotypes and be useful as markers of cancer spread. Gains or losses of the genes may be involved in development of the metastatic phenotypes in some cases, but other mechanisms for transcriptional regulation are probably important in the majority of tumors

    GeneCount: genome-wide calculation of absolute tumor DNA copy numbers from array comparative genomic hybridization data

    Get PDF
    Absolute tumor DNA copy numbers can currently be achieved only on a single gene basis by using fluorescence in situ hybridization (FISH). We present GeneCount, a method for genome-wide calculation of absolute copy numbers from clinical array comparative genomic hybridization data. The tumor cell fraction is reliably estimated in the model. Data consistent with FISH results are achieved. We demonstrate significant improvements over existing methods for exploring gene dosages and intratumor copy number heterogeneity in cancers

    Gene Dosage, Expression, and Ontology Analysis Identifies Driver Genes in the Carcinogenesis and Chemoradioresistance of Cervical Cancer

    Get PDF
    Integrative analysis of gene dosage, expression, and ontology (GO) data was performed to discover driver genes in the carcinogenesis and chemoradioresistance of cervical cancers. Gene dosage and expression profiles of 102 locally advanced cervical cancers were generated by microarray techniques. Fifty-two of these patients were also analyzed with the Illumina expression method to confirm the gene expression results. An independent cohort of 41 patients was used for validation of gene expressions associated with clinical outcome. Statistical analysis identified 29 recurrent gains and losses and 3 losses (on 3p, 13q, 21q) associated with poor outcome after chemoradiotherapy. The intratumor heterogeneity, assessed from the gene dosage profiles, was low for these alterations, showing that they had emerged prior to many other alterations and probably were early events in carcinogenesis. Integration of the alterations with gene expression and GO data identified genes that were regulated by the alterations and revealed five biological processes that were significantly overrepresented among the affected genes: apoptosis, metabolism, macromolecule localization, translation, and transcription. Four genes on 3p (RYBP, GBE1) and 13q (FAM48A, MED4) correlated with outcome at both the gene dosage and expression level and were satisfactorily validated in the independent cohort. These integrated analyses yielded 57 candidate drivers of 24 genetic events, including novel loci responsible for chemoradioresistance. Further mapping of the connections among genetic events, drivers, and biological processes suggested that each individual event stimulates specific processes in carcinogenesis through the coordinated control of multiple genes. The present results may provide novel therapeutic opportunities of both early and advanced stage cervical cancers

    Msh2 deficiency increases susceptibility to benzo[a]pyrene-induced lymphomagenesis

    No full text
    DNA mismatch repair (MMR) is essential for repair of single-base mismatches and insertion/deletion loops. MMR proteins also participate in cellular response to DNA damaging agents such as various alkylating agents. Mice deficient in the MMR gene Msh2 develop tumors earlier after exposure to alkylating agents when compared to unexposed mice. The interaction between the MMR system and polycyclic aromatic hydrocarbons such as benzo[a]pyrene (B[a]P) has not been investigated in vivo. Here, we show that treatment of Msh2-deficient mice with B[a]P enhances susceptibility to lymphomagenesis. Carrying at least one intact copy of the Msh2 gene had a protective effect. B[a]P treatment only induced lymphomas in 3 of the 40 (7.5%) mice with at least one intact copy of the Msh2 gene as compared to 13 of the 17 (76.5%) Msh2-deficient mice and occurs only after a much longer time period. The B[a]P-DNA adduct levels measured in lung, liver, spleen and forestomach of B[a]P-treated Msh2(-/-) mice were not significantly different from B[a]P-treated Msh2(+/+) mice. In summary, the results suggest that B[a]P accelerates lymphomagenesis in Msh2-deficient mice. Furthermore, Msh2 deficiency does not have any significant effect on B[a]P-DNA adduct levels. (c) 2005 Wiley-Liss, Inc

    Posterior probability density of the transcript concentration (number of transcripts per µg total RNA) for the oncogene in two different cervix tumours

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Genome-wide estimation of transcript concentrations from spotted cDNA microarray data"</p><p>Nucleic Acids Research 2005;33(17):e143-e143.</p><p>Published online 4 Oct 2005</p><p>PMCID:PMC1243803.</p><p>© The Author 2005. Published by Oxford University Press. All rights reserved</p> The mode of this density is the estimated concentration as listed at . There was a significant difference in the concentration between the tumours ( < 0.001, Kolmogorov–Smirnov test). The qRT-PCR data (relative to TBP) were 0.24 for MM14 and 0.023 for MM18, in agreement with our estimates
    corecore