155 research outputs found
PKCΔ, Via its Regulatory Domain and Independently of its Catalytic Domain, Induces Neurite-like Processes in Neuroblastoma Cells
To investigate the role of protein kinase C (PKC) isoforms in regulation of neurite outgrowth, PKCα, ÎČII, ÎŽ, and Δ fused to enhanced green fluorescent protein (EGFP) were transiently overexpressed in neuroblastoma cells. Overexpression of PKCΔâEGFP induced cell processes whereas the other isoforms did not. The effect of PKCΔâEGFP was not suppressed by the PKC inhibitor GF109203X. Instead, process formation was more pronounced when the regulatory domain was introduced. Overexpression of various fragments from PKCΔ regulatory domain revealed that a region encompassing the pseudosubstrate, the two C1 domains, and parts of the V3 region were necessary and sufficient for induction of processes. By deleting the second C1 domain from this construct, a dominant-negative protein was generated which suppressed processes induced by full-length PKCΔ and neurites induced during retinoic acid- and growth factorâinduced differentiation. As with neurites in differentiated neuroblastoma cells, processes induced by the PKCΔâ PSC1V3 protein contained α-tubulin, neurofilament-160, and F-actin, but the PKCΔâPSC1V3-induced processes lacked the synaptic markers synaptophysin and neuropeptide Y. âThese data suggest that PKCΔ, through its regulatory domain, can induce immature neurite-like processes via a mechanism that appears to be of importance for neurite outgrowth during neuronal differentiation
The activation loop tyrosine 823 is essential for the transforming capacity of the c-Kit oncogenic mutant D816V.
Oncogenic c-Kit mutations have been shown to display ligand-independent receptor activation and cell proliferation. A substitution of aspartate to valine at amino acid 816 (D816V) is one of the most commonly found oncogenic c-Kit mutations and is found in >90% of cases of mastocytosis and less commonly in germ-cell tumors, core-binding factor acute myeloid leukemia and mucosal melanomas. The mechanisms by which this mutation leads to constitutive activation and transformation are not fully understood. Previous studies have shown that the D816V mutation causes a structural change in the activation loop (A-loop), resulting in weaker binding of the A-loop to the juxtamembrane domain. In this paper, we have investigated the role of Y823, the only tyrosine residue in the A-loop, and its role in oncogenic transformation by c-Kit/D816V by introducing the Y823F mutation. Although dispensable for the kinase activity of c-Kit/D816V, the presence of Y823 was crucial for cell proliferation and survival. Furthermore, mutation of Y823 selectively downregulates the Ras/Erk and Akt pathways as well as the phosphorylation of STAT5 and reduces the transforming capacity of the D816V/c-Kit in vitro. We further show that mice injected with cells expressing c-Kit/D816V/Y823F display significantly reduced tumor size as well as tumor weight compared with controls. Finally, microarray analysis, comparing Y823F/D816V cells with cells expressing c-Kit/D816V, demonstrate that mutation of Y823 causes upregulation of proapoptotic genes, whereas genes of survival pathways are downregulated. Thus, phosphorylation of Y823 is not necessary for kinase activation, but essential for the transforming ability of the c-Kit/D816V mutant.Oncogene advance online publication, 1 December 2014; doi:10.1038/onc.2014.383
Activated Transcription of the Human Neuropeptide Y Gene in Differentiating SH-SY5Y Neuroblastoma Cells Is Dependent on Transcription Factors AP-1, AP-2Î, and NGFI
Activated transcription of the human neuropeptide Y gene ( NPY ) was investigated in SH-SY5Y neuroblastoma cells at the onset of sympathetic neuronal differentiation induced by 12- O -tetradecanoylphorbol 13-acetate (TPA) and serum or by nerve growth factor (NGF). As determined by transient expression, two NGF response elements (REs) were required for transcription induced by NGF in SH-SY5Y cells with stable expression of an exogenous NGF receptor TRK-A gene (SH-SY5Y/trk). TPA treatment in the presence of serum induced NPY transcription in both wild-type SH-SY5Y (SH-SY5Y/wt) and SH-SY5Y/trk cells. A TPA RE (TRE), overlapping the proximal NGF RE, was identified by expression of the v-Jun oncoprotein that enhanced NPY transcription. Suppression of TPA-induced NPY transcription was obtained by expression of a dominant negative Jun protein, selective protein kinase C inhibition, or introduction of a mutated TRE, whereas NGF-induced NPY transcription was inhibited to a lesser degree. The transcription factor AP-2Î was shown to bind cooperatively to the NPY promoter with either AP-1 or NGFI-A to the shared TRE and NGF RE and to the distal NGF RE, respectively. These results show that transcription factors AP-1, AP-2Î, and NGFI-A are involved in activated NPY transcription during the onset of neuronal differentiation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65864/1/j.1471-4159.1998.70051887.x.pd
Differential regulation of HIF-1α and HIF-2α in neuroblastoma: Estrogen-related receptor alpha (ERRα) regulates HIF2A transcription and correlates to poor outcome
AbstractHypoxia-inducible factors (HIFs) are differentially regulated in tumor cells. While the current paradigm supports post-translational regulation of the HIF-α subunits, we recently showed that hypoxic HIF-2α is also transcriptionally regulated via insulin-like growth factor (IGF)-II in the childhood tumor neuroblastoma. Here, we demonstrate that transcriptional regulation of HIF-2α seems to be restricted to neural cell-derived tumors, while HIF-1α is canonically regulated at the post-translational level uniformly across different tumor forms. Enhanced expression of HIF2A mRNA at hypoxia is due to de novo transcription rather than increased mRNA stability, and chemical stabilization of the HIF-α proteins at oxygen-rich conditions unexpectedly leads to increased HIF2A transcription. The enhanced HIF2A levels do not seem to be dependent on active HIF-1. Using a transcriptome array approach, we identified members of the Peroxisome proliferator-activated receptor gamma coactivator (PGC)/Estrogen-related receptor (ERR) complex families as potential regulators of HIF2A. Knockdown or inhibition of one of the members, ERRα, leads to decreased expression of HIF2A, and high expression of the ERRα gene ESRRA correlates with poor overall and progression-free survival in a clinical neuroblastoma material consisting of 88 tumors. Thus, targeting of ERRα and pathways regulating transcriptional HIF-2α are promising therapeutic avenues in neuroblastoma
The tyrosine kinase CSK associates with FLT3 and c-Kit receptors and regulates downstream signaling.
Type III receptor tyrosine kinases (RTKs), FLT3 and c-Kit play important roles in a variety of cellular processes. A number of SH2-domain containing proteins interact with FLT3 and c-Kit and regulate downstream signaling. The SH2-domain containing non-receptor protein tyrosine kinase CSK is mainly studied in context of regulating Src family kinases. Here we present an addition role of this kinase in RTK signaling. We show that CSK interacts with FLT3 and c-Kit in a phosphorylation dependent manner. This interaction is facilitated through the SH2-domain of CSK. Under basal conditions CSK is mainly localized throughout the cytosolic compartment but upon ligand stimulation it is recruited to the inner side of cell membrane. CSK association did not alter receptor ubiquitination or phosphorylation but disrupted downstream signaling. Selective depletion of CSK using siRNA, or inhibition with CSK inhibitor, led to increased phosphorylation of Akt and Erk, but not p38, upon FLT3 ligand (FL) stimulation. Stem cell factor (SCF)-mediated Akt and Erk activation was also elevated by CSK inhibition. However, siRNA mediated CSK knockdown increased SCF stimulated Akt phosphorylation but decreased Erk phosphorylation. CSK depletion also significantly increased both FL- and SCF-induced SHC, Gab2 and SHP2 phosphorylation. Furthermore, CSK depletion contributed to oncogenic FLT3- and c-Kit-mediated cell proliferation, but not to cell survival. Thus, the results indicate that CSK association with type III RTKs, FLT3 and c-Kit can have differential impact on receptor downstream signaling
Positional and functional mapping of a neuroblastoma differentiation gene on chromosome 11
BACKGROUND: Loss of chromosome 11q defines a subset of high-stage aggressive neuroblastomas. Deletions are typically large and mapping efforts have thus far not lead to a well defined consensus region, which hampers the identification of positional candidate tumour suppressor genes. In a previous study, functional evidence for a neuroblastoma suppressor gene on chromosome 11 was obtained through microcell mediated chromosome transfer, indicated by differentiation of neuroblastoma cells with loss of distal 11q upon introduction of chromosome 11. Interestingly, some of these microcell hybrid clones were shown to harbour deletions in the transferred chromosome 11. We decided to further exploit this model system as a means to identify candidate tumour suppressor or differentiation genes located on chromosome 11. RESULTS: In a first step, we performed high-resolution arrayCGH DNA copy-number analysis in order to evaluate the chromosome 11 status in the hybrids. Several deletions in both parental and transferred chromosomes in the investigated microcell hybrids were observed. Subsequent correlation of these deletion events with the observed morphological changes lead to the delineation of three putative regions on chromosome 11: 11q25, 11p13->11p15.1 and 11p15.3, that may harbour the responsible differentiation gene. CONCLUSION: Using an available model system, we were able to put forward some candidate regions that may be involved in neuroblastoma. Additional studies will be required to clarify the putative role of the genes located in these chromosomal segments in the observed differentiation phenotype specifically or in neuroblastoma pathogenesis in general
Human fetal neuroblast and neuroblastoma transcriptome analysis confirms neuroblast origin and highlights neuroblastoma candidate genes
BACKGROUND: Neuroblastoma tumor cells are assumed to originate from primitive neuroblasts giving rise to the sympathetic nervous system. Because these precursor cells are not detectable in postnatal life, their transcription profile has remained inaccessible for comparative data mining strategies in neuroblastoma. This study provides the first genome-wide mRNA expression profile of these human fetal sympathetic neuroblasts. To this purpose, small islets of normal neuroblasts were isolated by laser microdissection from human fetal adrenal glands. RESULTS: Expression of catecholamine metabolism genes, and neuronal and neuroendocrine markers in the neuroblasts indicated that the proper cells were microdissected. The similarities in expression profile between normal neuroblasts and malignant neuroblastomas provided strong evidence for the neuroblast origin hypothesis of neuroblastoma. Next, supervised feature selection was used to identify the genes that are differentially expressed in normal neuroblasts versus neuroblastoma tumors. This approach efficiently sifted out genes previously reported in neuroblastoma expression profiling studies; most importantly, it also highlighted a series of genes and pathways previously not mentioned in neuroblastoma biology but that were assumed to be involved in neuroblastoma pathogenesis. CONCLUSION: This unique dataset adds power to ongoing and future gene expression studies in neuroblastoma and will facilitate the identification of molecular targets for novel therapies. In addition, this neuroblast transcriptome resource could prove useful for the further study of human sympathoadrenal biogenesis
Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors
The differentiation stage of tumors is a central aspect in the histopathological classification of solid malignancies. The differentiation stage is strongly associated with tumor behavior, and generally an immature tumor is more aggressive than the more differentiated counterpart. While this is common knowledge in surgical pathology, the contribution of differentiation-related gene expression and functions to tumor behavior is often overlooked in the experimental, tumor biological setting. The mechanisms by which tumor cell differentiation stages are perturbed or affected are poorly explored but have recently come into focus with the introduction.of the tumor stem cell concept. While developmental biologists view the differentiation as a unidirectional event, pathologists and tumor biologists have introduced the concept of dedifferentiation to explain phenotypic changes occurring in solid tumors. In this review we discuss the impact of the tumor cell differentiation stage as used in surgical pathology. We further discuss knowledge gained from exploring the molecular basis of the differentiation and dedifferentiation processes in neuroblastoma and breast cancer, two tumor forms where the tumor cell differentiation concept is used in the clinical diagnostic work and where the tumor stem cell theory has been applied
- âŠ