844 research outputs found

    When Do Subpollen Particles Become Relevant for Ice Nucleation Processes in Clouds?

    Get PDF
    When exposed to sufficiently humid environments, pollen grains burst and release large quantities of small subpollen particles (SPPs) which carry ice nucleating macromolecules. In this study, for the first time we develop a physically based parameterization describing the bursting process of pollen by applying a turgor pressure parameterization and quantify the impact SPPs have on overall ice nucleation in clouds. SPPs are generated from simulated birch pollen emissions over Europe for a 10-day case study in spring. We found SPP concentrations to surpass pollen grain concentrations by 4–6 orders of magnitude leading to an abundance of biological ice nuclei from SPPs in the range of 103^3−104^4 m−3^{−3}. However, it is found that these concentrations lead to only small changes in hydrometeor number densities and precipitation. Addressing the question when SPPs become relevant for ice nucleation in clouds, we conducted a sensitivity investigation. We find that amplifying ice nucleation efficiency of biological particles by factors greater 100 increases the ice particle numbers by up to 25% (T ≈ 268 K). Strong reductions show in cloud droplet number concentration and water vapor at these temperatures while water vapor is increasing at 600 m. Overall, we found a net reduction of water in the atmosphere as liquid and particularly water vapor density is reduced, while frozen water mass density increases above 257 K. Findings indicate an alteration of mixed-phase cloud composition and increased precipitation (up to 6.2%) when SPPs are considered as highly efficient biological ice nuclei

    Encapsulation kinetics and dynamics of carbon monoxide in clathrate hydrate.

    Get PDF
    Carbon monoxide clathrate hydrate is a potentially important constituent in the solar system. In contrast to the well-established relation between the size of gaseous molecule and hydrate structure, previous work showed that carbon monoxide molecules preferentially form structure-I rather than structure-II gas hydrate. Resolving this discrepancy is fundamentally important to understanding clathrate formation, structure stabilization and the role the dipole moment/molecular polarizability plays in these processes. Here we report the synthesis of structure-II carbon monoxide hydrate under moderate high-pressure/low-temperature conditions. We demonstrate that the relative stability between structure-I and structure-II hydrates is primarily determined by kinetically controlled cage filling and associated binding energies. Within hexakaidecahedral cage, molecular dynamic simulations of density distributions reveal eight low-energy wells forming a cubic geometry in favour of the occupancy of carbon monoxide molecules, suggesting that the carbon monoxide-water and carbon monoxide-carbon monoxide interactions with adjacent cages provide a significant source of stability for the structure-II clathrate framework

    In vivo Observation of Tree Drought Response with Low-Field NMR and Neutron Imaging

    Get PDF
    Using a simple low-field NMR system, we monitored water content in a livingtree in a greenhouse over two months. By continuously running thesystem, we observed changes in tree water content on a scale of halfan hour. The data showed a diurnal change in water content consistentboth with previous NMR and biological observations. Neutron imaging experiments showthat our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accountingfor the role of temperature in the observed NMR signal, we demonstratea change in the diurnal signal behavior due to simulated drought conditionsfor the tree. These results illustrate the utility of our system toperform noninvasive measurements of tree water content outside of a temperature controlled environment

    <i>In situ</i> diagnostics of the crystal-growth process through neutron imaging:application to scintillators

    Get PDF
    Neutrons are known to be unique probes in situations where other types of radiation fail to penetrate samples and their surrounding structures. In this paper it is demonstrated how thermal and cold neutron radiography can provide time-resolved imaging of materials while they are being processed (e.g. while growing single crystals). The processing equipment, in this case furnaces, and the scintillator materials are opaque to conventional X-ray interrogation techniques. The distribution of the europium activator within a BaBrCl:Eu scintillator (0.1 and 0.5% nominal doping concentrations per mole) is studied in situ during the melting and solidification processes with a temporal resolution of 5-7 s. The strong tendency of the Eu dopant to segregate during the solidification process is observed in repeated cycles, with Eu forming clusters on multiple length scales (only for clusters larger than ∼50 µm, as limited by the resolution of the present experiments). It is also demonstrated that the dopant concentration can be quantified even for very low concentration levels (∼0.1%) in 10 mm thick samples. The interface between the solid and liquid phases can also be imaged, provided there is a sufficient change in concentration of one of the elements with a sufficient neutron attenuation cross section. Tomographic imaging of the BaBrCl:0.1%Eu sample reveals a strong correlation between crystal fractures and Eu-deficient clusters. The results of these experiments demonstrate the unique capabilities of neutron imaging for in situ diagnostics and the optimization of crystal-growth procedures
    • …
    corecore