4 research outputs found

    Study of poly(lactic acid) foams preparation

    Get PDF
    Táto bakalárska práca sa zaoberá spôsobom výroby expandovanej poly(kyseliny mliečnej) (PLA) alebo polylaktidu a skúmaním niektorých jej vlastností. Teoretická časť je zameraná na rôzne spôsoby výroby PLA, jej vlastnosti a možnosti degradácie. Ďalej rozoberá rôzne možnosti výroby expandovanej PLA a javy ovplyvňujúce expanziu, ako napr. rozpustnosť plynov v PLA. Tiež sa zameriava na pevnostné vlastnosti PLA pien. Experimentálna časť sa sústreďuje na konkrétny spôsob výroby expandovanej PLA, a to rozpustením fyzikálneho nadúvadla v PLA a následne vypenenie. Skúma konkrétne podmienky pri výrobe PLA peny, ako napr. potrebný tlak plynu, veľkosť častíc PLA. Ďalej sa zaoberá rôznymi typmi vyrobených pien líšiacich sa hustotou alebo teplotou spracovania. V závere sa zameriava na pevnostné charakteristiky vyrobených pien v závislosti na ich hustote a teplote spracovania.The bachelor thesis focuses on the processing of expanded poly(lactic acid) (PLA) or polylactide and on studying of some of its properties. The theoretical part deals with several ways of processing of PLA, its properties and methods of degradation. Furthermore, this part focuses on various processing methods of expanded PLA and the phenomena affecting the expansion, such as dissolving of gases in PLA. At the end of this part, it focuses on strength properties of PLA foams. The experimental part deals with specific way of processing of expanded PLA; that is dissolving of the physical blowing agent in PLA and subsequent foaming. Specific conditions within the processing of PLA foams are investigated there, such as pressure of gas needed, size of PLA particles. Further, this part focuses on distinct types of PLA foams differing in density or processing temperature. Last, it focuses on strength characteristics of PLA foams depending on their density and processing temperature.

    Functional foams with densit ygradient

    Get PDF
    Vycházíme-li z lehčených přírodních materiálů, lze od porézních materiálů s gradientem porozity očekávat mechanické vlastnosti nadřazené konvenčím polymerním pěnám, a to díky jejich specifické architektuře. Tyto vlastnosti umožňují použití lehčených materiálů jako strukturních prvků. V této práci je popsaná příprava gradientních porézních materiálů pomocí laminování a/nebo 3D tisku. Provedeny byly statické a dynamické mechanické testy na obou kvazi homogenních a gradientně porézních pěnách poskytující experimentální podklad pro hypotézu deformační odezvy plynoucí ze strukturní architektury. Data se interpretovala užitím zavedených teoretických modelů. Naše výsledky vedly k závěru, že tyto teoretické modely odvozené od pěn s pravidelnou strukturou není vhodné aplikovat pro pěny s gradientem porozity, protože prokazují podstatně lepší mechanické vlastnosti než homogenně porézní pěny.Inspired by lightweight natural materials, cellular materials with gradient porosity are expected to possess mechanical properties superior to conventional polymer foams due to their specific structural architecture. These properties could allow use of the lightweight materials in structural components. In this thesis, preparation of the gradient cellular materials is investigated employing the laminating and/or 3D printing. Static and dynamic mechanical tests were performed on both quasi homogenous and gradient porosity foams providing experimental support for the hypothesis of structural architecture driven deformation response. Experimental data were interpreted using existing theoretical models. Our results led to a conclusion that the existing theoretical models derived for regularly structured foams are not valid for foams with gradient porosity exhibiting mechanical properties substantially better than the foams with homogenous porosity.

    3D printing and post-curing optimization of photopolymerized structures: Basic concepts and effective tools for improved thermomechanical properties

    Get PDF
    The final thermo-mechanical properties of structural parts fabricated by masked stereolithography (MSLA) are highly determined not only by the processing parameters, but also by the post-processing methods. Improper implementation of post-treatment often leads to underperforming printouts. A novel tool for complex characterization of 3D printed bodies was developed and systematically demonstrated on a commercial free-radical photopolymerization (FRP) resin. The method relies on superimposed static and oscillatory mechanical test combining the heat deflection temperature (HDT) measurement together with the dynamic mechanical analysis (DMA) in a single test for fast and reliable characterization of parameters determining the curing behaviour of the photopolymer. The influence of post-curing time was addressed with a special focus on network density. Furthermore, the print orientation, having a high impact on mechanical properties, is discussed with a particular regard on the residual stress mitigation in future applications, such as 3D-printed cellular bodies

    PLA toughening via bamboo-inspired 3D printed structural design

    Get PDF
    Bioinspired structures can attain mechanical properties unseen in conventional artificial materials. Specifically, the introduction of a cellular structure with a precisely designed distribution of cells, cell sizes, and cell walls is expected to enhance the mechanical response. Polylactic acid (PLA) is a biodegradable polymer produced from renewable resources with very interesting properties and good three-dimensional (3D) printing processability. However, its embrittlement during ageing at room temperature after a very short period of time (a few hours) significantly reduces its usability for advanced applications. Intense effort has been invested in improving its toughness via composition modification. However, this approach can worsen some other properties, make processing more difficult, and increase the carbon footprint. Therefore, fused deposition modelling (FDM) 3D printing was used to manufacture porous bamboo-inspired structures of unmodified PLA. The toughening of PLA solely by the pore gradient, which controlled the energy dissipation mechanism, was introduced for the first time. Improvement of the ductility and work at break was observed especially for notched specimens. Prevention of catastrophic failure could enable the use of gradient porous materials in structural components. The fundamental relationships and practical hints resulting from the work provide a foundation for the future design of toughened 3D printed structures
    corecore