115 research outputs found

    Long-term clearance from small airways in subjects with ciliary dysfunction

    Get PDF
    The objective of this study was to investigate if long-term clearance from small airways is dependent on normal ciliary function. Six young adults with primary ciliary dyskinesia (PCD) inhaled (111 )Indium labelled Teflon particles of 4.2 μm geometric and 6.2 μm aerodynamic diameter with an extremely slow inhalation flow, 0.05 L/s. The inhalation method deposits particles mainly in the small conducting airways. Lung retention was measured immediately after inhalation and at four occasions up to 21 days after inhalation. Results were compared with data from ten healthy controls. For additional comparison three of the PCD subjects also inhaled the test particles with normal inhalation flow, 0.5 L/s, providing a more central deposition. The lung retention at 24 h in % of lung deposition (Ret(24)) was higher (p < 0.001) in the PCD subjects, 79 % (95% Confidence Interval, 67.6;90.6), compared to 49 % (42.3;55.5) in the healthy controls. There was a significant clearance after 24 h both in the PCD subjects and in the healthy controls with equivalent clearance. The mean Ret(24 )with slow inhalation flow was 73.9 ± 1.9 % compared to 68.9 ± 7.5 % with normal inhalation flow in the three PCD subjects exposed twice. During day 7–21 the three PCD subjects exposed twice cleared 9 % with normal flow, probably representing predominantly alveolar clearance, compared to 19 % with slow inhalation flow, probably representing mainly small airway clearance. This study shows that despite ciliary dysfunction, clearance continues in the small airways beyond 24 h. There are apparently additional clearance mechanisms present in the small airways

    Interactions between Glutathione S-Transferase P1, Tumor Necrosis Factor, and Traffic-Related Air Pollution for Development of Childhood Allergic Disease

    Get PDF
    BACKGROUND: Air pollutants may induce airway inflammation and sensitization due to generation of reactive oxygen species. The genetic background to these mechanisms could be important effect modifiers. OBJECTIVE: Our goal was to assess interactions between exposure to air pollution and single nucleotide polymorphisms (SNPs) in the beta2-adrenergic receptor (ADRB2), glutathione S-transferase P1 (GSTP1), and tumor necrosis factor (TNF) genes for development of childhood allergic disease. METHODS: In a birth cohort originally of 4,089 children, we assessed air pollution from local traffic using nitrogen oxides (traffic NO(x)) as an indicator based on emission databases and dispersion modeling and estimated individual exposure through geocoding of home addresses. We measured peak expiratory flow rates and specific IgE for inhalant and food allergens at 4 years of age, and selected children with asthma symptoms up to 4 years of age (n = 542) and controls (n = 542) for genotyping. RESULTS: Interaction effects on allergic sensitization were indicated between several GSTP1 SNPs and traffic NO(x) exposure during the first year of life (p(nominal) &lt; 0.001-0.06). Children with Ile105Val/Val105Val genotypes were at increased risk of sensitization to any allergen when exposed to elevated levels of traffic NO(x) (for a difference between the 5th and 95th percentile of exposure: odds ratio = 2.4; 95% confidence interval, 1.0-5.3). In children with TNF-308 GA/AA genotypes, the GSTP1-NO(x) interaction effect was even more pronounced. We observed no conclusive interaction effects for ADRB2. CONCLUSION: The effect of air pollution from traffic on childhood allergy appears to be modified by GSTP1 and TNF variants, supporting a role of genes controlling the antioxidative system and inflammatory response in allergy

    Potential of a cyclone prototype spacer to improve in vitro dry powder delivery

    Get PDF
    Copyright The Author(s) 2013. This article is published with open access at Springerlink.com. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are creditedPurpose: Low inspiratory force in patients with lung disease is associated with poor deagglomeration and high throat deposition when using dry powder inhalers (DPIs). The potential of two reverse flow cyclone prototypes as spacers for commercial carrierbased DPIs was investigated. Methods: Cyclohaler®, Accuhaler® and Easyhaler® were tested with and without the spacers between 30-60 Lmin-1. Deposition of particles in the next generation impactor and within the devices was determined by high performance liquid chromatography. Results: Reduced induction port deposition of the emitted particles from the cyclones was observed due to the high retention of the drug within the spacers (e.g. salbutamol sulphate (SS): 67.89 ± 6.51 % at 30 Lmin-1 in Cheng 1). Fine particle fractions of aerosol as emitted from the cyclones were substantially higher than the DPIs alone. Moreover, the aerodynamic diameters of particles emitted from the cyclones were halved compared to the DPIs alone (e.g. SS from the Cyclohaler® at 4 kPa: 1.08 ± 0.05 μm vs. 3.00 ± 0.12 μm, with and without Cheng 2, respectively) and unaltered with increased flow rates. Conclusion: This work has shown the potential of employing a cyclone spacer for commercial carrier-based DPIs to improve inhaled drug delivery.Peer reviewe

    Relation between dietary cadmium intake and biomarkers of cadmium exposure in premenopausal women accounting for body iron stores

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cadmium is a widespread environmental pollutant with adverse effects on kidneys and bone, but with insufficiently elucidated public health consequences such as risk of end-stage renal diseases, fractures and cancer. Urinary cadmium is considered a valid biomarker of lifetime kidney accumulation from overall cadmium exposure and thus used in the assessment of cadmium-induced health effects. We aimed to assess the relationship between dietary cadmium intake assessed by analyses of duplicate food portions and cadmium concentrations in urine and blood, taking the toxicokinetics of cadmium into consideration.</p> <p>Methods</p> <p>In a sample of 57 non-smoking Swedish women aged 20-50 years, we assessed Pearson's correlation coefficients between: 1) Dietary intake of cadmium assessed by analyses of cadmium in duplicate food portions collected during four consecutive days and cadmium concentrations in urine, 2) Partial correlations between the duplicate food portions and urinary and blood cadmium concentrations, respectively, and 3) Model-predicted urinary cadmium concentration predicted from the dietary intake using a one-compartment toxicokinetic model (with individual data on age, weight and gastrointestinal cadmium absorption) and urinary cadmium concentration.</p> <p>Results</p> <p>The mean concentration of cadmium in urine was 0.18 (+/- s.d.0.12) μg/g creatinine and the model-predicted urinary cadmium concentration was 0.19 (+/- s.d.0.15) μg/g creatinine. The partial Pearson correlations between analyzed dietary cadmium intake and urinary cadmium or blood concentrations were r = 0.43 and 0.42, respectively. The correlation between diet and urinary cadmium increased to r = 0.54 when using a one-compartment model with individual gastrointestinal cadmium absorption coefficients based on the women's iron status.</p> <p>Conclusions</p> <p>Our results indicate that measured dietary cadmium intake can reasonably well predict biomarkers of both long-term kidney accumulation (urine) and short-term exposure (blood). The predictions are improved when taking data on the iron status into account.</p

    Mucociliary and long-term particle clearance in airways of patients with immotile cilia

    Get PDF
    Spherical monodisperse ferromagnetic iron oxide particles of 1.9 μm geometric and 4.2 μm aerodynamic diameter were inhaled by seven patients with primary ciliary dyskinesia (PCD) using the shallow bolus technique, and compared to 13 healthy non-smokers (NS) from a previous study. The bolus penetration front depth was limiting to the phase1 dead space volume. In PCD patients deposition was 58+/-8 % after 8 s breath holding time. Particle retention was measured by the magnetopneumographic method over a period of nine months. Particle clearance from the airways showed a fast and a slow phase. In PCD patients airway clearance was retarded and prolonged, 42+/-12 % followed the fast phase with a mean half time of 16.8+/-8.6 hours. The remaining fraction was cleared slowly with a half time of 121+/-25 days. In healthy NS 49+/-9 % of particles were cleared in the fast phase with a mean half time of 3.0+/-1.6 hours, characteristic of an intact mucociliary clearance. There was no difference in the slow clearance phase between PCD patients and healthy NS. Despite non-functioning cilia the effectiveness of airway clearance in PCD patients is comparable to healthy NS, with a prolonged kinetics of one week, which may primarily reflect the effectiveness of cough clearance. This prolonged airway clearance allows longer residence times of bacteria and viruses in the airways and may be one reason for increased frequency of infections in PCD patients

    Inhaled steroid/tobacco smoke particle interactions: a new light on steroid resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhaled steroid resistance is an obstacle to asthma control in asthmatic smokers. The reasons of this phenomenon are not yet entirely understood. Interaction of drug particles with environmental tobacco smoke (ETS) could change the aerodynamic profile of the drug through the particle coagulation phenomenon. Aim of the present study was to examine whether steroid particles interact with smoke when delivered in the presence of ETS.</p> <p>Methods</p> <p>Beclomethasone-hydrofluoralkane (BDP-HFA) pMDI particle profile was studied after a single actuation delivered in ambient air or in the presence of ETS in an experimental chamber using a light scattering Optical Particle Counter capable of measuring the concentrations of particle sized 0.3–1.0, 1.1–2.0, 2.1–3.0, 3.1–4.0, 4.1–5.0, and > 5.1 μm in diameter with a sampling time of one second. The number of drug particles delivered after a single actuation was measured as the difference between total particle number after drug delivery and background particle number. Two groups of experiments were carried out at different ambient background particle concentrations. Two-tail Student's t-test was used for statistical analysis.</p> <p>Results</p> <p>When delivered in ambient air, over 90% of BDP-HFA particles were found in the 0.3–1.0 μm size class, while particles sized 1.1–2.0 μm and 2.1–3.0 represented less than 6.6% and 2.8% of total particles, respectively. However, when delivered in the presence of ETS, drug particle profile was modified, with an impressive decrease of 0.3–1.0 μm particles, the most represented particles resulting those sized 1.1–2.0 μm (over 66.6% of total particles), and 2.1–3.0 μm particles accounting up to 31% of total particles.</p> <p>Conclusion</p> <p>Our data suggest that particle interaction between inhaled BDP-HFA pMDI and ETS takes place in the first few seconds after drug delivery, with a decrease in smaller particles and a concurrent increase of larger particles. The resulting changes in aerosol particle profile might modify regional drug deposition with potential detriment to drug efficacy, and represent a new element of steroid resistance in smokers. Although the present study does not provide any functional or clinical assessment, it might be useful to advise smokers and non smokers with obstructive lung disease such as asthma or COPD, to avoid to act inhaled drugs in the presence of ETS in order to obtain the best therapeutic effect.</p

    Asthmatics Exhibit Altered Oxylipin Profiles Compared to Healthy Individuals after Subway Air Exposure

    Get PDF
    Asthma is a chronic inflammatory lung disease that causes significant morbidity and mortality worldwide. Air pollutants such as particulate matter (PM) and oxidants are important factors in causing exacerbations in asthmatics, and the source and composition of pollutants greatly affects pathological implications.This randomized crossover study investigated responses of the respiratory system to Stockholm subway air in asthmatics and healthy individuals. Eicosanoids and other oxylipins were quantified in the distal lung to provide a measure of shifts in lipid mediators in association with exposure to subway air relative to ambient air.Sixty-four oxylipins representing the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP) metabolic pathways were screened using liquid chromatography-tandem mass spectrometry (LC-MS/MS) of bronchoalveolar lavage (BAL)-fluid. Validations through immunocytochemistry staining of BAL-cells were performed for 15-LOX-1, COX-1, COX-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Multivariate statistics were employed to interrogate acquired oxylipin and immunocytochemistry data in combination with patient clinical information.Asthmatics and healthy individuals exhibited divergent oxylipin profiles following exposure to ambient and subway air. Significant changes were observed in 8 metabolites of linoleic- and α-linolenic acid synthesized via the 15-LOX pathway, and of the COX product prostaglandin E(2) (PGE(2)). Oxylipin levels were increased in healthy individuals following exposure to subway air, whereas asthmatics evidenced decreases or no change.Several of the altered oxylipins have known or suspected bronchoprotective or anti-inflammatory effects, suggesting a possible reduced anti-inflammatory response in asthmatics following exposure to subway air. These observations may have ramifications for sensitive subpopulations in urban areas

    Fundamentals of aerosol therapy in critical care

    Full text link
    corecore