3,461 research outputs found

    Experimental study of radiatively cooled magnetically driven plasma jets

    Get PDF
    This thesis presents the results of experiments to study the formation and dynamics of plasma jets in the laboratory, in particular their scaling to astrophysical jets. The experiments were performed on the MAGPIE generator, which delivered a peak current of 1 MA in 250 ns. A variety of plasma diagnostics allowed the dynamics of the jets to be studied and the conditions of the plasma to be determined. Radial wire array experiments were performed in which the mass of the wires and the magnitude of the toroidal magnetic field was varied. These results show that it is possible to control the time of formation and the expansion velocity of the magnetically driven jet that characterizes this configuration. In addition, the experiments allowed the introduction of a poloidal magnetic field into the radial wire array with the aim of studying its effect on the dynamics and stability of the plasma jet. The radial foil is introduced as a novel configuration to produce episodic magnetic-tower jets. Magnetic cavities were observed to emerge in timescales of ~ 30 ns, with increasing expansion velocities reaching ~ 300 km/s. The formation of episodic magnetically driven jets occurs due to reconnection of current at the base of the cavity, allowing 3-4 episodes to be produced per experiment. Results allowed the energy balance, the magnitude of the trapped toroidal magnetic field, and the characteristic temperatures in these outflows to be determined, as well as other plasma parameters. This experimental setup allowed the study of the interaction of episodic jets with an ambient medium by introducing a neutral gas above the foil. The dynamics of the formation of several shock structures at early times was studied, opening new possibilities for laboratory astrophysics experiments in the future

    Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm

    Get PDF
    We present an algorithm to study mixed-state dynamics in one-dimensional quantum lattice systems. The algorithm can be used, e.g., to construct thermal states or to simulate real time evolutions given by a generic master equation. Its two main ingredients are (i) a superoperator renormalization scheme to efficiently describe the state of the system and (ii) the time evolving block decimation (TEBD) technique to efficiently update the state during a time evolution. The computational cost of a simulation increases significantly with the amount of correlations between subsystems but it otherwise depends only linearly in the system size. We present simulations involving quantum spins and fermions in one spatial dimension.Comment: See also F. Verstraete et al. cond-mat/040642

    An explicit substructuring method for overlapping domain decomposition based on stochastic calculus

    Full text link
    In a recent paper [{\em F. Bernal, J. Mor\'on-Vidal and J.A. Acebr\'on, Comp.&\& Math. App. 146:294-308 (2023)}] an hybrid supercomputing algorithm for elliptic equations has been put forward. The idea is that the interfacial nodal solutions solve a linear system, whose coefficients are expectations of functionals of stochastic differential equations confined within patches of about subdomain size. Compared to standard substructuring techniques such as the Schur complement method for the skeleton, the hybrid approach renders an explicit and sparse shrunken matrix -- hence suitable for being substructured again. The ultimate goal is to push strong scalability beyond the state of the art, by leveraging the scope for parallelisation of stochastic calculus. Here, we present a major revamping of that framework, based on the insight of embedding the domain in a cover of overlapping circles (in two dimensions). This allows for efficient Fourier interpolation along the interfaces (now circumferences) and -- crucially -- for the evaluation of most of the interfacial system entries as the solution of small boundary value problems on a circle. This is both extremely efficient (as they can be solved in parallel and by the pseudospectral method) and free of Monte Carlo error. Stochastic numerics are only needed on the relatively few circles intersecting the domain boundary. In sum, the new formulation is significantly faster, simpler and more accurate, while retaining all of the advantageous properties of PDDSparse. Numerical experiments are included for the purpose of illustration

    Occurrence of ferredoxin-dependent glutamate synthase in plant cell fraction of soybean root nodules (Glycine max)

    Get PDF
    AbstractFerredoxin-dependent glutamate synthase (EC 1.4.7.1) and NADH-dependent glutamate synthase (EC 1.4.1.14) have been identified in the plant cells of soybean nodules. Ferredoxin-dependent glutamate synthase is 2-fold more active than NADH-dependent enzyme in vitro. Ferredoxin-dependent glutamate synthase cross-reacts with IgG against ferredoxin-dependent glutamate synthase of rice green leaves, whereas NADH-dependent glutamate synthase does not recognize the IgG, indicating that there are two distinct enzyme proteins. Ferredoxin-dependent glutamate synthase is composed of polypeptide chain(s) of 165 kDa and has a high affinity to spinach leaf ferredoxin as an electron carrier

    X-ray scattering from surfaces: discrete and continuous components of roughness

    Full text link
    Incoherent surface scattering yields a statistical description of the surface, due to the ensemble averaging over many independently sampled volumes. Depending on the state of the surface and direction of the scattering vector relative to the surface normal, the height distribution is discrete, continuous, or a combination of the two. We present a treatment for the influence of multimodal surface height distributions on Crystal Truncation Rod scattering. The effects of a multimodal height distribution are especially evident during in situ monitoring of layer-by-layer thin-film growth via Pulsed Laser Deposition. We model the total height distribution as a convolution of discrete and continuous components, resulting in a broadly applicable parameterization of surface roughness which can be applied to other scattering probes, such as electrons and neutrons. Convolution of such distributions could potentially be applied to interface or chemical scattering. Here we find that this analysis describes accurately our experimental studies of SrTiO3 annealing and homoepitaxial growth.Comment: 15 pages, 7 figure

    Efficient simulation of one-dimensional quantum many-body systems

    Get PDF
    We present a numerical method to simulate the time evolution, according to a Hamiltonian made of local interactions, of quantum spin chains and systems alike. The efficiency of the scheme depends on the amount of the entanglement involved in the simulated evolution. Numerical analysis indicate that this method can be used, for instance, to efficiently compute time-dependent properties of low-energy dynamics of sufficiently regular but otherwise arbitrary one-dimensional quantum many-body systems.Comment: 4 pages, 1 figur

    Target Design for XUV Probing of Radiative Shock Experiments

    Full text link
    Radiative shocks are strong shocks characterized by plasma at a high temperature emitting an important fraction of its energy as radiation. Radiative shocks are commonly found in many astrophysical systems and are templates of radiative hydrodynamic flows, which can be studied experimentally using high-power lasers. This is not only important in the context of laboratory astrophysics but also to benchmark numerical studies. We present details on the design of experiments on radiative shocks in xenon gas performed at the kJ scale PALS laser facility. It includes technical specifications for the tube targets design and numerical studies with the 1-D radiative hydrodynamics code MULTI. Emphasis is given to the technical feasibility of an XUV imaging diagnostic with a 21 nm (~58 eV) probing beam, which allows to probe simultaneously the post-shock and the precursor region ahead of the shock. The novel design of the target together with the improved X-ray optics and XUV source allow to show both the dense post-shock structure and the precursor of the radiative shock.Comment: 12 pages, 4 figure
    corecore