21,663 research outputs found

    Relativistic free-particle quantization on the light-front: New aspects

    Get PDF
    We use the light-front machinery to study the behavior of a relativistic free particle and obtain the quantum commutation relations from the classical Poisson brackets. We argue that the usual projection onto the light-front coordinates for these from the covariant commutation ralations does not reproduce the expected results.Comment: To appear in the proceedings "IX Hadron Physics and VII Relativistic Aspects of Nuclear Physics: A Joint Meeting on QCD and QGP, Hadron Physics-RANP,2004,Angra dos Reis, Rio de Janeiro,Brazi

    Surprises in the relativistic free-particle quantization on the light-front

    Get PDF
    We use the light front ``machinery'' to study the behavior of a relativistic free particle and obtain the quantum commutation relations from the classical Poisson brackets. We argue that their usual projection onto the light-front coordinates from the covariant commutation relations show that there is an inconsistency in the expected correlation between canonically conjugate variables ``time'' and ``energy''. Moreover we show that this incompatibility originates from the very definition of the Poisson brackets that is employed and present a simple remedy to this problem and envisages a profound physical implication on the whole process of quantization.Comment: 13 page

    Ultraviolet Behavior of the Gluon Propagator in the Maximal Abelian Gauge

    Full text link
    The ultraviolet asymptotic behavior of the gluon propagator is evaluated in the maximal Abelian gauge in the SU(2) gauge theory on the basis of the renormalization-group improved perturbation theory at the one-loop level. Square-root singularities obtained in the Euclidean domain are attributed to artifacts of the one-loop approximation in the maximal Abelian gauge and the standard normalization condition for the propagator used in our study. It is argued that this gauge is essentially nonperturbative.Comment: 15 pages, 2 figure

    The dilute A_L models and the integrable perturbations of unitary minimal CFTs

    Full text link
    Recently, a set of thermodynamic Bethe ansatz equations is proposed by Dorey, Pocklington and Tateo for unitary minimal models perturbed by \phi_{1,2} or \phi_{2,1} operator. We examine their results in view of the lattice analogues, dilute A_L models at regime 1 and 2. Taking M_{5,6}+\phi_{1,2} and M_{3,4}+\phi_{2,1} as the simplest examples, we will explicitly show that the conjectured TBA equations can be recovered from the lattice model in a scaling limit.Comment: 14 pages, 2 figure

    Electrical transport and ferromagnetism in Ga1-xMnxAs synthesized by ion implantation and pulsed-laser melting

    Full text link
    We present a detailed investigation of the magnetic and magnetotransport properties of thin films of ferromagnetic Ga1-xMnxAs synthesized using ion implantation and pulsed-laser melting (II-PLM). The field and temperature-dependent magnetization, magnetic anisotropy, temperature-dependent resistivity, magnetoresistance, and Hall effect of II-PLM Ga1-xMnxAs films have all of the characteristic signatures of the strong p-d interaction of holes and Mn ions observed in the dilute hole-mediated ferromagnetic phase. The ferromagnetic and electrical transport properties of II-PLM films correspond to the peak substitutional Mn concentration meaning that the non-uniform Mn depth distribution is unimportant in determining the film properties. Good quantitative agreement is found with films grown by low temperature molecular beam epitaxy (LT-MBE) and having the similar substitutional Mn_Ga composition. Additionally, we demonstrate that II-PLM Ga1-xMnxAs films are free from interstitial Mn_I because of the high temperature processing. At high Mn implantation doses the kinetics of solute redistribution during solidification alone determine the maximum resulting Mn_Ga concentration. Uniaxial anisotropy between in-plane [-110]and [110] directions is present in II-PLM Ga1-xMnxAs giving evidence for this being an intrinsic property of the carrier-mediated ferromagnetic phase

    Low energy n-\nuc{3}{H} scattering : a novel testground for nuclear interaction

    Full text link
    The low energy n-\nuc{3}{H} elastic cross sections near the resonance peak are calculated by solving the 4-nucleon problem with realistic NN interactions. Three different methods -- Alt, Grassberger and Shandas (AGS), Hyperspherical Harmonics and Faddeev-Yakubovsky -- have been used and their respective results are compared. We conclude on a failure of the existing NN forces to reproduce the n-\nuc{3}{H} total cross section.Comment: To be published in Phys. Rev.

    Detection of Neutron Scattering from Phase IV of Ce0.7La0.3B6: A Confirmation of the Octupole Order

    Full text link
    We have performed a single crystal neutron scattering experiment on Ce0.7La0.3B6 to investigate the order parameter of phase IV microscopically. Below the phase transition temperature 1.5 K of phase IV, weak but distinct superlattice reflections at the scattering vector (h/2,h/2,l/2) (h, l = odd number) have been observed by neutron scattering for the first time. The intensity of the superlattice reflections is stronger for high scattering vectors, which is quite different from the usual magnetic form factor of magnetic dipoles. This result directly evidences that the order parameter of phase IV has a complex magnetization density, consistent with the recent experimental and theoretical prediction in which the order parameter is the magnetic octupoles Tbeta with Gamma5 symmetry of point group Oh. Neutron scattering experiments using short wavelength neutrons, as done in this study, could become a general method to study the high-rank multipoles in f electron systems.Comment: 4 pages, 4 figure

    Fowler-Nordheim-like local injection of photoelectrons from a silicon tip

    Full text link
    Tunneling between a photo-excited p-type silicon tip and a gold surface is studied as a function of tip bias, tip/sample distance and light intensity. In order to extend the range of application of future spin injection experiments, the measurements are carried out under nitrogen gas at room temperature. It is found that while tunneling of valence band electrons is described by a standard process between the semiconductor valence band and the metal, the tunneling of photoelectrons obeys a Fowler-Nordheim-like process directly from the conduction band. In the latter case, the bias dependence of the photocurrent as a function of distance is in agreement with theoretical predictions which include image charge effects. Quantitative analysis of the bias dependence of the dark and photocurrent spectra gives reasonable values for the distance, and for the tip and metal work functions. For small distances image charge effects induce a vanishing of the barrier and the bias dependence of the photocurrent is exponential. In common with many works on field emission, fluctuations in the tunneling currents are observed. These are mainly attributed to changes in the prefactor for the tunneling photocurrent, which we suggest is caused by an electric-field-induced modification of the thickness of the natural oxide layer covering the tip apex.Comment: 12 pages, 11 figures. Submitted to Phys. Rev.

    Energy levels in polarization superlattices: a comparison of continuum strain models

    Full text link
    A theoretical model for the energy levels in polarization superlattices is presented. The model includes the effect of strain on the local polarization-induced electric fields and the subsequent effect on the energy levels. Two continuum strain models are contrasted. One is the standard strain model derived from Hooke's law that is typically used to calculate energy levels in polarization superlattices and quantum wells. The other is a fully-coupled strain model derived from the thermodynamic equation of state for piezoelectric materials. The latter is more complete and applicable to strongly piezoelectric materials where corrections to the standard model are significant. The underlying theory has been applied to AlGaN/GaN superlattices and quantum wells. It is found that the fully-coupled strain model yields very different electric fields from the standard model. The calculated intersubband transition energies are shifted by approximately 5 -- 19 meV, depending on the structure. Thus from a device standpoint, the effect of applying the fully-coupled model produces a very measurable shift in the peak wavelength. This result has implications for the design of AlGaN/GaN optical switches.Comment: Revtex

    Quadrupolar Kondo Effect in Non-Kramers Doublet System PrInAg2

    Full text link
    We performed ultrasonic measurement on the rare-earth intermetallic compound PrInAg_2 to examine the quadrupolar Kondo effect associated with the non-Kramers Gamma_3 doublet ground state. The characteristic softening of the elastic constant (c_{11}-c_{12})/2 below 10 K in PrInAg_2 is attributed to a Curie term in quadrupolar susceptibility for the quadrupole O_2^2=J_x^2-J_y^2 of the stable Gamma_3 ground state. (c_{11}-c_{12})/2 turns to a slight increase with the -lnT dependence below 0.1 K, which suggests the quenching of the quadrupolar moment in the quadrupolar Kondo state. Under applied magnetic fields of 10 T and 15 T above 8.7 T corresponding to the Kondo temperature T_K of ~ 0.86 K, the behavior of (c_{11}-c_{12})/2 is described in terms of quadrupolar susceptibility for the stable 4f^2 state.Comment: PDF, 10pages + 5figures, Strongly Correlated Electron
    • …
    corecore