We present a detailed investigation of the magnetic and magnetotransport
properties of thin films of ferromagnetic Ga1-xMnxAs synthesized using ion
implantation and pulsed-laser melting (II-PLM). The field and
temperature-dependent magnetization, magnetic anisotropy, temperature-dependent
resistivity, magnetoresistance, and Hall effect of II-PLM Ga1-xMnxAs films have
all of the characteristic signatures of the strong p-d interaction of holes and
Mn ions observed in the dilute hole-mediated ferromagnetic phase. The
ferromagnetic and electrical transport properties of II-PLM films correspond to
the peak substitutional Mn concentration meaning that the non-uniform Mn depth
distribution is unimportant in determining the film properties. Good
quantitative agreement is found with films grown by low temperature molecular
beam epitaxy (LT-MBE) and having the similar substitutional Mn_Ga composition.
Additionally, we demonstrate that II-PLM Ga1-xMnxAs films are free from
interstitial Mn_I because of the high temperature processing. At high Mn
implantation doses the kinetics of solute redistribution during solidification
alone determine the maximum resulting Mn_Ga concentration. Uniaxial anisotropy
between in-plane [-110]and [110] directions is present in II-PLM Ga1-xMnxAs
giving evidence for this being an intrinsic property of the carrier-mediated
ferromagnetic phase