702 research outputs found

    Strong diamagnetic response and specific heat anomaly above T_c in underdoped La_(2-x)Sr_xCuO_4

    Full text link
    By measuring AC susceptibility using a very low amplitude of the AC field (<1 mG) it is shown that underdoped samples of La_(2-x)Sr_xCuO_4 (LASCO), are diamagnetic in a temperature region above T_c up to a temperature T^*. This behavior is only observed with AC fields along the c-axis whereas for fields in the ab-plane no diamagnetism above Tc was detected. The diamagnetism is almost frequency independent in the frequency range 0.1-10 kHz. At T* a broad step anomaly in the specific heat is inferred through measurements of the elastic constant c33. We suggest that the observed diamagnetism and the anomaly in the elastic constant are associated with the existence of phase incoherent Cooper pairs between Tc and T*.Comment: 5 pages 7 figures, to appear in Phys. rev

    Evidence for suppressed metallicity on the surface of La2-xSrxCuO4 and Nd2-xCexCuO4

    Get PDF
    Hard X-ray Photoemission spectroscopy (PES) of copper core electronic states, with a probing depth of \sim60 \AA, is used to show that the Zhang-Rice singlet feature is present in La2_2CuO4_4 but is absent in Nd2_2CuO4_4. Hole- and electron doping in La2x_{2-x}Srx_xCuO4_4 (LSCO) and Nd2x_{2-x}Cex_xCuO4_4 (NCCO) result in new well-screened features which are missing in soft X-ray PES. Impurity Anderson model calculations establish metallic screening as its origin, which is strongly suppressed within 15 A˚\text{\AA} of the surface. Complemented with X-ray absorption spectroscopy, the small chemical-potential shift in core levels (0.2\sim0.2 eV) are shown to be consistent with modifications of valence and conduction band states spanning the band gap (1\sim1 eV) upon hole- and electron-doping in LSCO and NCCO.Comment: 4 pages, 4 figure

    A Note on Computations of D-brane Superpotential

    Full text link
    We develop some computational methods for the integrals over the 3-chains on the compact Calabi-Yau 3-folds that plays a prominent role in the analysis of the topological B-model in the context of the open mirror symmetry. We discuss such 3-chain integrals in two approaches. In the first approach, we provide a systematic algorithm to obtain the inhomogeneous Picard-Fuchs equations. In the second approach, we discuss the analytic continuation of the period integral to compute the 3-chain integral directly. The latter direct integration method is applicable for both on-shell and off-shell formalisms.Comment: 61 pages, 5 figures; v2: typos corrected, minor changes, references adde

    Thermodynamic and Transport Properties of CeMg2Cu9 under Pressure

    Full text link
    We report the transport and thermodynamic properties under hydrostatic pressure in the antiferromagnetic Kondo compound CeMg2Cu9 with a two-dimensional arrangement of Ce atoms. Magnetic specific heat Cmag(T) shows a Schottky-type anomaly around 30 K originating from the crystal electric field (CEF) splitting of the 4f state with the first excited level at \Delta_{1}/kB = 58 K and the second excited level at \Delta_{2}/kB = 136 K from the ground state. Electric resistivity shows a two-peaks structure due to the Kondo effect on each CEF level around T_{1}^{max} = 3 K and T_{2}^{max} = 40 K. These peaks merge around 1.9 GPa with compression. With increasing pressure, Neel temperature TN initially increases and then change to decrease. TN finally disappears at the quantum critical point Pc = 2.4 GPa.Comment: 10 pages, 6 figure

    Development and characterization of the readout system for POLARBEAR-2

    Full text link
    POLARBEAR-2 is a next-generation receiver for precision measurements of the polarization of the cosmic microwave background (Cosmic Microwave Background (CMB)). Scheduled to deploy in early 2015, it will observe alongside the existing POLARBEAR-1 receiver, on a new telescope in the Simons Array on Cerro Toco in the Atacama desert of Chile. For increased sensitivity, it will feature a larger area focal plane, with a total of 7,588 polarization sensitive antenna-coupled Transition Edge Sensor (TES) bolometers, with a design sensitivity of 4.1 uKrt(s). The focal plane will be cooled to 250 milliKelvin, and the bolometers will be read-out with 40x frequency domain multiplexing, with 36 optical bolometers on a single SQUID amplifier, along with 2 dark bolometers and 2 calibration resistors. To increase the multiplexing factor from 8x for POLARBEAR-1 to 40x for POLARBEAR-2 requires additional bandwidth for SQUID readout and well-defined frequency channel spacing. Extending to these higher frequencies requires new components and design for the LC filters which define channel spacing. The LC filters are cold resonant circuits with an inductor and capacitor in series with each bolometer, and stray inductance in the wiring and equivalent series resistance from the capacitors can affect bolometer operation. We present results from characterizing these new readout components. Integration of the readout system is being done first on a small scale, to ensure that the readout system does not affect bolometer sensitivity or stability, and to validate the overall system before expansion into the full receiver. We present the status of readout integration, and the initial results and status of components for the full array.Comment: Presented at SPIE Astronomical Telescopes and Instrumentation 2014: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. Published in Proceedings of SPIE Volume 915

    Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-like Star GJ 504

    Full text link
    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages (<50 Myr) and atmospheric properties, with temperatures of 800--1800 K and very red colors (J - H > 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly-imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160 [+350, -60] Myr, GJ 504 b has an estimated mass of 4 [+4.5, -1.0] Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of ~30 AU predicted for the core accretion mechanism. GJ 504 b is also significantly cooler (510 [+30, -20] K) and has a bluer color (J-H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets, as well as their atmospheric properties.Comment: 20 pages, 12 figures, Accepted for publication in ApJ. Minor updates from the version

    Improved Study of the Antiprotonic Helium Hyperfine Structure

    Get PDF
    We report the initial results from a systematic study of the hyperfine (HF) structure of antiprotonic helium (n,l) = (37,~35) carried out at the Antiproton Decelerator (AD) at CERN. We performed a laser-microwave-laser resonance spectroscopy using a continuous wave (cw) pulse-amplified laser system and microwave cavity to measure the HF transition frequencies. Improvements in the spectral linewidth and stability of our laser system have increased the precision of these measurements by a factor of five and reduced the line width by a factor of three compared to our previous results. A comparison of the experimentally measured transition frequencies with three body QED calculations can be used to determine the antiproton spin magnetic moment, leading towards a test of CPT invariance.Comment: 14 pages 9 figure

    A novel immunoscintigraphy technique using metabolizable linker with angiotensin II treatment

    Get PDF
    Immunoscintigraphy is a tumour imaging technique that can have specificity, but high background radioactivity makes it difficult to obtain tumour imaging soon after the injection of radioconjugate. The aim of this study is to see whether clear tumour images can be obtained soon after injection of a radiolabelled reagent using a new linker with antibody fragments (Fab), in conditions of induced hypertension in mice. Fab fragments of a murine monoclonal antibody against human osteosarcoma were labelled with radioiodinated 3′-iodohippuryl N-ɛ-maleoyl-L-lysine (HML) and were injected intravenously to tumour-bearing mice. Angiotensin II was administered for 4 h before and for 1 h after the injection of radiolabelled Fab. Kidney uptake of 125I-labelled-HML-Fab was much lower than that of 125I-labelled-Fab radioiodinated by the chloramine-T method, and the radioactivity of tumour was increased approximately two-fold by angiotensin II treatment at 3 h after injection, indicating high tumour-to-normal tissue ratios. A clear tumour image was obtained with 131I-labelled-HML-Fab at 3 h post-injection. The use of HML as a radiolabelling reagent, combined with angiotensin II treatment, efficiently improved tumour targeting and enabled the imaging of tumours. These results suggest the feasibility of PET scan using antibody fragment labelled with 18F-fluorine substitute for radioiodine. © 1999 Cancer Research Campaig
    corecore