81 research outputs found

    Isotopic signals in fracture-filling calcite showing anaerobic oxidation of methane in a granitic basement

    Get PDF
    Understanding the long-term redox conditions and the related carbon cycle in groundwater is essential for long-term safety assessment because they affect the performance of barrier systems and radionuclide transport in geological disposal. However, it is difficult to identify those long-term changes directly. To help understand this, we conducted a paleohydrogeological study on calcite mineralization associated with fracture-controlled groundwater flow-paths in the Toki Granite in central Japan, focusing on its carbon and oxygen stable isotope characteristics. Previous studies revealed four generations of fracture-filling calcite in the Toki Granite. Therefore, we conducted isotopic analysis on both bulk samples of calcite and spatially-resolved microsamples of discrete generations of calcite within zoned crystals. The δ18OVPDB of calcite ranging between −32.7‰ to −0.59‰ revealed that the groundwater that precipitated the calcite was derived from various origins over the geological history of the area, including early hydrothermal fluids associated with the late-stage cooling of the granite (less than −17.2‰); freshwater invasion from the surface following regional uplift (−18.5‰∼ −8.3‰), and; seawater that penetrated during periods of marine transgression (−8.7‰ ∼ −0.3‰). The range in δ13CVPDB values (−56.5‰ ∼ +6.0‰) was wider than the isotopic range of dissolved inorganic carbon (DIC) that originated from hydrothermal, meteoric, and seawater sources (−25‰ ∼ +2‰). Calcite with low δ13CVPDB values less than −25‰ is believed to have precipitated from groundwater with DIC that was provided by anaerobic oxidation of methane (AOM), whereas calcite with δ13CVPDB higher than +2‰ is believed to have precipitated from groundwater containing 13C-enriched DIC as a carbon source derived during methanogenesis. These processes influencing the formation of calcite mineralization in the Toki Granite are comparable to those at other crystalline rock sites in European countries. The AOM calcite and calcite associated with methanogenesis in the Toki Granite precipitated during the transition of the groundwater origin from meteoric to seawater. Understanding these redox processes and the related carbon cycle in granitic groundwater can provide important insights into processes relevant to assessing the long-term evolution of geoenvironmental systems

    Sclerite formation in the hydrothermal-vent “scaly-foot” gastropod — possible control of iron sulfide biomineralization by the animal

    Get PDF
    A gastropod from a deep-sea hydrothermal field at the Rodriguez triple junction, Indian Ocean, has scale-shaped structures, called sclerites, mineralized with iron sulfides on its foot. No other organisms are known to produce a skeleton consisting of iron sulfides. To investigate whether iron sulfide mineralization is mediated by the gastropod for the function of the sclerites, we performed a detailed physical and chemical characterization. Nanostructural characterization of the iron sulfide sclerites reveals that the iron sulfide minerals pyrite (FeS2) and greigite (Fe3S4) form with unique crystal habits inside and outside of the organic matrix, respectively. The magnetic properties of the sclerites, which are mostly consistent with those predicted from their nanostructual features, are not optimized for magnetoreception and instead support use of the magnetic minerals as structural elements. The mechanical performance of the sclerites is superior to that of other biominerals used in the vent environment for predation as well as protection from predation. These characteristics, as well as the co-occurrence of brachyuran crabs, support the inference that the mineralization of iron sulfides might be controlled by the gastropod to harden the sclerites for protection from predators. Sulfur and iron isotopic analyses indicate that sulfur and iron in the sclerites originate from hydrothermal fluids rather than from bacterial metabolites, and that iron supply is unlikely to be regulated by the gastropod for iron sulfide mineralization. We propose that the gastropod may control iron sulfide mineralization by modulating the internal concentrations of reduced sulfur compounds

    Bullet-shaped magnetosomes and metagenomic-based magnetosome gene profiles in a deep-sea hydrothermal vent chimney

    Get PDF
    Magnetosome-producing microorganisms can sense and move toward the redox gradient and have been extensively studied in terrestrial and shallow marine sediment environments. However, given the difficulty of sampling, magnetotactic bacteria (MTB) are poorly explored in deep-sea hydrothermal fields. In this study, a deep-sea hydrothermal vent chimney from the Southern Mariana Trough was collected using a remotely operated submersible. The mineralogical and geochemical characterization of the vent chimney sample showed an internal iron redox gradient. Additionally, the electron microscopy of particles collected by magnetic separation from the chimney sample revealed MTB cells with bullet-shaped magnetosomes, and there were minor occurrences of cuboctahedral and hexagonal prismatic magnetosomes. Genome-resolved metagenomic analysis was performed to identify microorganisms that formed magnetosomes. A metagenome-assembled genome (MAG) affiliated with Nitrospinae had magnetosome genes such as mamA, mamI, mamM, mamP, and mamQ. Furthermore, a diagnostic feature of MTB genomes, such as magnetosome gene clusters (MGCs), including mamA, mamP, and mamQ, was also confirmed in the Nitrospinae-affiliated MAG. Two lines of evidence support the occurrence of MTB in a deep-sea, inactive hydrothermal vent environment

    Evidence in the Japan Sea of microdolomite mineralization within gas hydrate microbiomes

    Get PDF
    This study was conducted under the commission of AIST (National Institute of Advanced Industrial Science and Technology, Japan) from 2013–2015 as part of the methane hydrate research project funded by METI (the Ministry of Economy, Trade and Industry, Japan). Ongoing work is currently being carried out thanks to a Grant-in-aid provided by the JSPS and MEXT (Kaken Project # 17K05712). The authors also would like to acknowledge laboratory assistance provided by A. Hiruta, T. Oi, N. Ishida, and R. Warabi (GHRL, Meiji University), Y. Kusaba (AORI, University of Tokyo), S. Motai (Kochi Inst. Core Sample Research, JAMSTEC), and Y. Nakajima (Joetsu Environmental Science Centre).Peer reviewedPublisher PD

    Deep microbial proliferation at the basalt interface in 33.5–104 million-year-old oceanic crust

    Get PDF
    The upper oceanic crust is mainly composed of basaltic lava that constitutes one of the largest habitable zones on Earth. However, the nature of deep microbial life in oceanic crust remains poorly understood, especially where old cold basaltic rock interacts with seawater beneath sediment. Here we show that microbial cells are densely concentrated in Fe-rich smectite on fracture surfaces and veins in 33.5- and 104-million-year-old (Ma) subseafloor basaltic rock. The Fe-rich smectite is locally enriched in organic carbon. Nanoscale solid characterizations reveal the organic carbon to be microbial cells within the Fe-rich smectite, with cell densities locally exceeding 1010 cells/cm3. Dominance of heterotrophic bacteria indicated by analyses of DNA sequences and lipids supports the importance of organic matter as carbon and energy sources in subseafloor basalt. Given the prominence of basaltic lava on Earth and Mars, microbial life could be habitable where subsurface basaltic rocks interact with liquid water

    Workshop report: Exploring deep oceanic crust off Hawai‘i

    Get PDF
    For more than half a century, exploring a complete sequence of the oceanic crust from the seafloor through the Mohorovičić discontinuity (Moho) and into the uppermost mantle has been one of the most challenging missions of scientific ocean drilling. Such a scientific and technological achievement would provide humankind with profound insights into the largest realm of our planet and expand our fundamental understanding of Earth's deep interior and its geodynamic behavior. The formation of new oceanic crust at mid-ocean ridges and its subsequent aging over millions of years, leading to subduction, arc volcanism, and recycling of some components into the mantle, comprise the dominant geological cycle of matter and energy on Earth. Although previous scientific ocean drilling has cored some drill holes into old (> 110 Ma) and young (< 20 Ma) ocean crust, our sampling remains relatively shallow (< 2 km into intact crust) and unrepresentative of average oceanic crust. To date, no hole penetrates more than 100 m into intact average-aged oceanic crust that records the long-term history of seawater–basalt exchange (60 to 90 Myr). In addition, the nature, extent, and evolution of the deep subseafloor biosphere within oceanic crust remains poorly unknown. To address these fundamentally significant scientific issues, an international workshop “Exploring Deep Oceanic Crust off Hawai`i” brought together 106 scientists and engineers from 16 countries that represented the entire spectrum of disciplines, including petrologists, geophysicists, geochemists, microbiologists, geodynamic modelers, and drilling/logging engineers. The aim of the workshop was to develop a full International Ocean Discovery Program (IODP) proposal to drill a 2.5 km deep hole into oceanic crust on the North Arch off Hawai`i with the drilling research vessel Chikyu. This drill hole would provide samples down to cumulate gabbros of mature (∼ 80 Ma) oceanic crust formed at a half spreading rate of ∼ 3.5 cm a−1. A Moho reflection has been observed at ∼ 5.5 km below the seafloor at this site, and the workshop concluded that the proposed 2.5 km deep scientific drilling on the North Arch off Hawai`i would provide an essential “pilot hole” to inform the design of future mantle drilling

    Planetary protection: an international concern and responsibility

    Get PDF
    Planetary protection is a set of measures agreed upon at an international level to ensure the protection of scientific investigation during space exploration. As space becomes more accessible with traditional and new actors launching complex and innovative projects that involve robotics (including sample return) and human exploration, we have the responsibility to protect the pristine environments that we explore and our own biosphere. In this sense, the Committee on Space Research (COSPAR) provides the international standard for planetary protection as well as a forum for international consultation. COSPAR has formulated a Planetary Protection Policy with associated requirements for responsible space exploration. Although not legally binding under international law, the standard offered by the Policy with its associated requirements is internationally endorsed along with implementation guidelines supplied for reference in support States’ compliance with Article IX of the United Nations Outer Space Treaty of 1967. Indeed, States parties to the Outer Space Treaty (under Article VI) are responsible for any space activities in their countries, governmental and non-governmental. The main goal of this Policy is to avoid compromising the search for any lifeforms on other celestial bodies and to protect the Earth from a potential threat posed by extraterrestrial samples returned by an interplanetary mission. The COSPAR Planetary Protection Policy has defined five categories, depending on the target and objective of the specific space mission. Associated to these categories are requirements are various degrees of rigor in the contamination control applied. The Policy is assessed regularly and updated with input from new scientific findings and in conjunction with the fast-evolving space exploration milieu. The COSPAR Panel on Planetary Protection (PPP) is a designated international committee composed of scientists, agency representatives and space experts. Its role is to support and revise the COSPAR Policy and its related requirements (https://cosparhq.cnes.fr/scientific-structure/panels/panel-on-planetary-protection-ppp/). The Panel’s activities deal with the individual needs of a space mission while exercising swift care and expertise to ensure sustainable exploration of the Solar System

    COSPAR Sample Safety Assessment Framework (SSAF)

    Get PDF
    The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems (e.g., environment, biosphere, geochemical cycles). During the Working Group's deliberations, it became clear that a comprehensive assessment to predict the effects of introducing life in new environments or ecologies is difficult and practically impossible, even for terrestrial life and certainly more so for unknown extraterrestrial life. To manage expectations, the scope of the SSAF was adjusted to evaluate only whether the presence of martian life can be excluded in samples returned from Mars. If the presence of martian life cannot be excluded, a Hold & Critical Review must be established to evaluate the risk management measures and decide on the next steps. The SSAF starts from a positive hypothesis (there is martian life in the samples), which is complementary to the null-hypothesis (there is no martian life in the samples) typically used for science. Testing the positive hypothesis includes four elements: (1) Bayesian statistics, (2) subsampling strategy, (3) test sequence, and (4) decision criteria. The test sequence capability covers self-replicating and non-self-replicating biology and biologically active molecules. Most of the investigations associated with the SSAF would need to be carried out within biological containment. The SSAF is described in sufficient detail to support planning activities for a Sample Receiving Facility (SRF) and for preparing science announcements, while at the same time acknowledging that further work is required before a detailed Sample Safety Assessment Protocol (SSAP) can be developed. The three major open issues to be addressed to optimize and implement the SSAF are (1) setting a value for the level of assurance to effectively exclude the presence of martian life in the samples, (2) carrying out an analogue test program, and (3) acquiring relevant contamination knowledge from all Mars Sample Return (MSR) flight and ground elements. Although the SSAF was developed specifically for assessing samples from Mars in the context of the currently planned NASA-ESA MSR Campaign, this framework and the basic safety approach are applicable to any other Mars sample return mission concept, with minor adjustments in the execution part related to the specific nature of the samples to be returned. The SSAF is also considered a sound basis for other COSPAR Planetary Protection Category V, restricted Earth return missions beyond Mars. It is anticipated that the SSAF will be subject to future review by the various MSR stakeholders

    The COSPAR planetary protection requirements for space missions to Venus

    Get PDF
    The Committee on Space Research's (COSPAR) Planetary Protection Policy states that all types of missions to Venus are classified as Category II, as the planet has significant research interest relative to the processes of chemical evolution and the origin of life, but there is only a remote chance that terrestrial contamination can proliferate and compromise future investigations. "Remote chance" essentially implies the absence of environments where terrestrial organisms could survive and replicate. Hence, Category II missions only require simplified planetary protection documentation, including a planetary protection plan that outlines the intended or potential impact targets, brief Pre- and Post-launch analyses detailing impact strategies, and a Post-encounter and End-of-Mission Report. These requirements were applied in previous missions and are foreseen for the numerous new international missions planned for the exploration of Venus, which include NASA's VERITAS and DAVINCI missions, and ESA's EnVision mission. There are also several proposed missions including India's Shukrayaan-1, and Russia's Venera-D. These multiple plans for spacecraft coincide with a recent interest within the scientific community regarding the cloud layers of Venus, which have been suggested by some to be habitable environments. The proposed, privately funded, MIT/Rocket Lab Venus Life Finder mission is specifically designed to assess the habitability of the Venusian clouds and to search for signs of life. It includes up to three atmospheric probes, the first one targeting a launch in 2023. The COSPAR Panel on Planetary Protection evaluated scientific data that underpins the planetary protection requirements for Venus and the implications of this on the current policy. The Panel has done a thorough review of the current knowledge of the planet's conditions prevailing in the clouds. Based on the existing literature, we conclude that the environmental conditions within the Venusian clouds are orders of magnitude drier and more acidic than the tolerated survival limits of any known terrestrial extremophile organism. Because of this future orbital, landed or entry probe missions to Venus do not require extra planetary protection measures. This recommendation may be revised in the future if new observations or reanalysis of past data show any significant increment, of orders of magnitude, in the water content and the pH of the cloud layer

    火星サンプルリターンに向けた国際的な惑星保護の検討状況

    No full text
    corecore