32,479 research outputs found

    Orthonormalization procedure for chiral effective nuclear field theory

    Get PDF
    We show that the Q-box expansion of nuclear many-body physics can be applied in nuclear effective field theory with explicit pions and external sources. We establish the corresponding power counting and give an algorithm for the construction of a hermitean and energy-independent potential for arbitrary scattering processes on nucleons and nuclei to a given order in the chiral expansion. Various examples are discussed in some detail.Comment: 22 pp, 12 fig

    Analysis of Cumulant Moments in High Energy Hadron-Hadron Collisions by Truncated Multiplicity Distributions

    Get PDF
    Oscillatory behavior of cumulant moments obtained from the experimental data in pppp collisions and pˉp\bar{p}p collisions are analyzed by the modified negative binomial distribution (MNBD) and the negative binomial distribution (NBD). Both distributions well describe the cumulant moments obtained from the data. This fact shows sharp contrast to the result in e+ee^+e^- collisions, which is described by the the MNBD much better than by the NBD.Comment: 7 pages, Latex type, 7 figure

    Structure of the baryonic flux tube in N_{f}=2 lattice QCD at finite temperature

    Full text link
    We study the flux tube profile in the baryonic system in full QCD at finite temperature on Nt=8N_{t}=8 lattice. We fix the maximally Abelian gauge and measure the monopole and the photon parts of the Abelian action density, the color electric field and the monopole current on both sides of the finite temperature transition. We demonstrate the disappearance of the flux tube in the high temperature phase.Comment: 3 pages, 4 figures, Lattice2003 topolog

    Suppression of compressible edge channels and spatial spin polarization in the integer quantum Hall regime

    Full text link
    We perform systematic numerical studies of the structure of spin-resolved compressible strips in split-gate quantum wires taking into account the exchange and correlation interactions within the density functional theory in the local spin-density approximation. We find that for realistic parameters of the wire the exchange interaction can completely suppress the formation of the compressible strips. As the depletion length or magnetic field are increased, the compressible strips starts to form first for the spin-down and then for spin-up edge channels. We demonstrate that the widths of these strips plus the spatial separation between them caused by the exchange interaction are equal to the width of the compressible strip calculated in the Hartree approximation for spinless electrons. We also discuss the effect of electron density on the suppression of the compressible strips in quantum wires.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    An effective action for monopoles and knot solitons in Yang-Mills theory

    Get PDF
    By comparision with numerical results in the maximal Abelian projection of lattice Yang-Mills theory, it is argued that the nonperturbative dynamics of Yang Mills theory can be described by a set of fields that take their values in the coset space SU(2)/U(1). The Yang-Mills connection is parameterized in a special way to separate the dependence on the coset field. The coset field is then regarded as a collective variable, and a method to obtain its effective action is developed. It is argued that the physical excitations of the effective action may be knot solitons. A procedure to calculate the mass scale of knot solitons is discussed for lattice gauge theories in the maximal Abelian projection. The approach is extended to the SU(N) Yang-Mills theory. A relation between the large N limit and the monopole dominance is pointed out.Comment: plain Latex, 12 pages, no figures, a few references and comments are added, a final version for Phys. Lett.

    More anomaly-free models of six-dimensional gauged supergravity

    Full text link
    We construct a huge number of anomaly-free models of six-dimensional N = (1,0) gauged supergravity. The gauge groups are products of U(1) and SU(2), and every hyperino is charged under some of the gauge groups. It is also found that the potential may have flat directions when the R-symmetry is diagonally gauged together with another gauge group. In an appendix, we determine the contribution to the global SU(2) anomaly from symplectic Majorana Weyl fermions in six dimensions.Comment: 20 pages, v3: published versio

    The quenching of compressible edge states around antidots

    Full text link
    We provide a systematic quantitative description of the edge state structure around a quantum antidot in the integer quantum Hall regime. The calculations for spinless electrons within the Hartree approximation reveal that the widely used Chklovskii et al. electrostatic description greatly overestimates the widths of the compressible strips; the difference between these approaches diminishes as the size of the antidot increases. By including spin effects within density functional theory in the local spin-density approximation, we demonstrate that the exchange interaction can suppress the formation of compressible strips and lead to a spatial separation between the spin-up and spin-down states. As the magnetic field increases, the outermost compressible strip, related to spin-down states starts to form. However, in striking contrast to quantum wires, the innermost compressible strip (due to spin-up states) never develops for antidots.Comment: submitted to Phys. Rev. Let

    Vacuum type of SU(2) gluodynamics in maximally Abelian and Landau gauges

    Get PDF
    The vacuum type of SU(2) gluodynamics is studied using Monte-Carlo simulations in maximally Abelian (MA) gauge and in Landau (LA) gauge, where the dual Meissner effect is observed to work. The dual Meissner effect is characterized by the coherence and the penetration lengths. Correlations between Wilson loops and electric fields are evaluated in order to measure the penetration length in both gauges. The coherence length is shown to be fixed in the MA gauge from measurements of the monopole density around the static quark-antiquark pair. It is also shown numerically that a dimension 2 gluon operator A^+A^-(s) and the monopole density has a strong correlation as suggested theoretically. Such a correlation is observed also between the monopole density and A^2(s)= A^+A^-(s) + A^3A^3(s) condensate if the remaining U(1) gauge degree of freedom is fixed to U(1) Landau gauge (U1LA). The coherence length is determined numerically also from correlations between Wilson loops and A^+A^-(s) and A^2(s) in MA + U1LA gauge. Assuming that the same physics works in the LA gauge, we determine the coherence length from correlations between Wilson loops and A^2(s). Penetration lengths and coherence lengths in the two gauges are almost the same. The vacuum type of the confinement phase in both gauges is near to the border between the type 1 and the type 2 dual superconductors.Comment: 13 pages, 22 figures, RevTeX 4 styl

    Exciton Mott transition in Si Revealed by Terahertz Spectroscopy

    Full text link
    Exciton Mott transition in Si is investigated by using terahertz time-domain spectroscopy. The excitonic correlation as manifested by the 1s-2p resonance is observed above the Mott density. The scattering rate of charge carriers is prominently enhanced at the proximity of Mott density, which is attributed to the non-vanishing exciton correlation in the metallic electron-hole plasma. Concomitantly, the signature of plasmon-exciton coupling is observed in the loss function spectra.Comment: 5 pages, 3 figure
    corecore