98 research outputs found

    Inactivation of a Novel FGF23 Regulator, FAM20C, Leads to Hypophosphatemic Rickets in Mice

    Get PDF
    Family with sequence similarity 20,-member C (FAM20C) is highly expressed in the mineralized tissues of mammals. Genetic studies showed that the loss-of-function mutations in FAM20C were associated with human lethal osteosclerotic bone dysplasia (Raine Syndrome), implying an inhibitory role of this molecule in bone formation. However, in vitro gain- and loss-of-function studies suggested that FAM20C promotes the differentiation and mineralization of mouse mesenchymal cells and odontoblasts. Recently, we generated Fam20c conditional knockout (cKO) mice in which Fam20c was globally inactivated (by crossbreeding with Sox2-Cre mice) or inactivated specifically in the mineralized tissues (by crossbreeding with 3.6 kb Col 1a1-Cre mice). Fam20c transgenic mice were also generated and crossbred with Fam20c cKO mice to introduce the transgene in the knockout background. In vitro gain- and loss-of-function were examined by adding recombinant FAM20C to MC3T3-E1 cells and by lentiviral shRNA–mediated knockdown of FAM20C in human and mouse osteogenic cell lines. Surprisingly, both the global and mineralized tissue-specific cKO mice developed hypophosphatemic rickets (but not osteosclerosis), along with a significant downregulation of osteoblast differentiation markers and a dramatic elevation of fibroblast growth factor 23 (FGF23) in the serum and bone. The mice expressing the Fam20c transgene in the wild-type background showed no abnormalities, while the expression of the Fam20c transgene fully rescued the skeletal defects in the cKO mice. Recombinant FAM20C promoted the differentiation and mineralization of MC3T3-E1 cells. Knockdown of FAM20C led to a remarkable downregulation of DMP1, along with a significant upregulation of FGF23 in both human and mouse osteogenic cell lines. These results indicate that FAM20C is a bone formation “promoter” but not an “inhibitor” in mouse osteogenesis. We conclude that FAM20C may regulate osteogenesis through its direct role in facilitating osteoblast differentiation and its systemic regulation of phosphate homeostasis via the mediation of FGF23

    Lack of Association Between DJ-1 Gene Promoter Polymorphism and the Risk of Parkinson’s Disease

    Get PDF
    Low DJ-1 protein level caused by DJ-1 gene mutation leads to autosomal recessive Parkinson’s disease (PD) due to impaired antioxidative activity. In sporadic PD patients, although mutations were rarely found, lower DJ-1 protein level was also reported. Dysregulation of DJ-1 gene expression might contribute to low DJ-1 protein level. Since the promoter is the most important element to initiate gene expression, whether polymorphisms in the DJ-1 promoter result in the dysregulation of gene expression, thus leading to low protein level and causing PD, is worth exploring. The DJ-1 promoter region was sequenced in a Chinese cohort to evaluate possible links between DJ-1 promoter polymorphisms, PD risk and clinical phenotypes. Dual-luciferase reporter assay was conducted to evaluate the influence of promoter polymorphisms on DJ-1 transcriptional activity. Related information in an existing genome-wide association studies (GWAS) database were looked up, meta-analysis of the present study and other previous reports was conducted, and expression quantitative trait loci (eQTL) analysis was performed to further explore the association. Three single nucleotide polymorphisms (SNPs) (rs17523802, rs226249, and rs35675666) and one 18 bp deletion (rs200968609) were observed in our cohort. However, there was no significant association between the four detected genetic variations and the risk of PD either in allelic or genotype model, in single-point analysis or haplotype analysis. This was supported by the meta-analysis of this study and previous reports as well as that of GWAS database PDGene. Dual luciferase reporter assay suggested these promoter polymorphisms had no influence on DJ-1 transcriptive activity, which is consistent with the eQTL analysis results using the data from GTEx database. Thus, DJ-1 promoter polymorphisms may play little role in the dysregulation of DJ-1 expression and PD susceptibility in sporadic PD

    Cloning and Characterization of Maize miRNAs Involved in Responses to Nitrogen Deficiency

    Get PDF
    Although recent studies indicated that miRNAs regulate plant adaptive responses to nutrient deprivation, the functional significance of miRNAs in adaptive responses to nitrogen (N) limitation remains to be explored. To elucidate the molecular biology underlying N sensing/signaling in maize, we constructed four small RNA libraries and one degradome from maize seedlings exposed to N deficiency. We discovered a total of 99 absolutely new loci belonging to 47 miRNA families by small RNA deep sequencing and degradome sequencing, as well as 9 new loci were the paralogs of previously reported miR169, miR171, and miR398, significantly expanding the reported 150 high confidence genes within 26 miRNA families in maize. Bioinformatic and subsequent small RNA northern blot analysis identified eight miRNA families (five conserved and three newly identified) differentially expressed under the N-deficient condition. Predicted and degradome-validated targets of the newly identified miRNAs suggest their involvement in a broad range of cellular responses and metabolic processes. Because maize is not only an important crop but is also a genetic model for basic biological research, our research contributes to the understanding of the regulatory roles of miRNAs in plant adaption to N-deficiency stress

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    RNA sequencing reveals differential long noncoding RNA expression profiles in bacterial and viral meningitis in children

    No full text
    Abstract Background We aimed to investigate the involvement of long non-coding RNA (lncRNA) in bacterial and viral meningitis in children. Methods The peripheral blood of five bacterial meningitis patients, five viral meningitis samples, and five healthy individuals were collected for RNA sequencing. Then, the differentially expressed lncRNA and mRNA were detected in bacterial meningitis vs. controls, viral meningitis vs. healthy samples, and bacterial vs. viral meningitis patients. Besides, co-expression and the competing endogenous RNA (ceRNA) networks were constructed. Receiver operating characteristic curve (ROC) analysis was performed. Results Compared with the control group, 2 lncRNAs and 32 mRNAs were identified in bacterial meningitis patients, and 115 lncRNAs and 54 mRNAs were detected in viral meningitis. Compared with bacterial meningitis, 165 lncRNAs and 765 mRNAs were identified in viral meningitis. 2 lncRNAs and 31 mRNAs were specific to bacterial meningitis, and 115 lncRNAs and 53 mRNAs were specific to viral meningitis. The function enrichment results indicated that these mRNAs were involved in innate immune response, inflammatory response, and immune system process. A total of 8 and 1401 co-expression relationships were respectively found in bacterial and viral meningitis groups. The ceRNA networks contained 1 lncRNA-mRNA pair and 4 miRNA-mRNA pairs in viral meningitis group. GPR68 and KIF5C, identified in bacterial meningitis co-expression analysis, had an area under the curve (AUC) of 1.00, while the AUC of OR52K2 and CCR5 is 0.883 and 0.698, respectively. Conclusions Our research is the first to profile the lncRNAs in bacterial and viral meningitis in children and may provide new insight into understanding meningitis regulatory mechanisms

    Multimodal evoked potentials are useful for the diagnosis of pediatric acute disseminated encephalomyelitis

    No full text
    Abstract Background The application of evoked potentials (EPs) to the diagnosis of acute disseminated encephalomyelitis (ADEM ) has not been investigated in detail. The aim of this study, therefore, was to analyze the value of multimodal EPs in the early diagnosis of pediatric ADEM. Methods This was a retrospective study in which we enrolled pediatric ADEM patients and controls (Cs) from neurology units between 2017 and 2021. We measured indices in patients using brainstem auditory evoked potentials (BAEPs), visual evoked potentials (VEPs) and somatosensory evoked potentials (SEPs), and then we analyzed their early diagnostic value in ADEM patients. Results The mean age of the ADEM group was 6.15 ± 3.28 years (range,1–12 years) and the male/female ratio was 2.1:1 The mean age of the Cs was 5.97 ± 3.40 years (range,1–12 years) and the male/female ratio was 1.3:1. As we used magnetic resonance imaging (MRI) as the diagnostic criterion, the sensitivity, specificity, and accuracy (κ was 0.88) of multimodal EPs were highly consistent with those of MRI; and the validity could be ranked in the following order with respect to the diagnosis of ADEM: multimodal Eps > single SEP > single VEP > single BAEP. Of 34 patients with ADEM, abnormalities in multimodal EPs were 94.12%, while abnormalities in single VEPs, BAEPs and SEPs were 70.59%,64.71%and 85.3%, respectively. We noted significant differences between single VEP/BAEPs and multimodal EPs (χ2 = 6.476/8.995,P = 0.011/0.003). Conclusions The combined application of multimodal EPs was superior to BAEPs, VEPs, or SEPs alone in detecting the existence of central nerve demyelination, and we hypothesize that these modalities will be applicable in the early diagnosis of ADEM

    Evaluation of sympathetic skin response for early diagnosis and follow-up of diabetic peripheral neuropathy in children

    No full text
    Abstract Background The morbidity of type 1 diabetes mellitus (T1DM) in children is increasing and diabetic peripheral neuropathy (DPN) is one of the main microvascular complications of T1DM. The aim of this study was to explore sympathetic skin response (SSR) characteristics in children with T1DM and analyze the value of early diagnosis and follow-up in T1DM complicated with DPN. Methods Our prospective study enrolling 85 participants diagnosed with T1DM and 30 healthy controls (HCs) in the Children’s Hospital of Hebei Province from 2017 to 2020. Compared the outcomes of SSR and nerve conduction study (NCS) in T1DM, and evaluated the variations in SSR and NCS of different durations, as well as changes after six months of therapy. Results SSR latency of T1DM group showed statistical difference as compared to HCs (p < 0.05). The SSR test was more sensitive than the NCS test in the early diagnosis of T1DM with DPN (p < 0.05). The abnormal rates of SSR and NCS in long duration of disease were higher than those in short duration of disease (p < 0.05). Among 65 participants with diabetic neuropathy, the onset latencies of SSR were shortened and the NCS were improved after treatment (p < 0.05). Conclusions SSR could provide the accurate early diagnosis and follow-up of pediatric diabetic peripheral neuropathy
    corecore