28 research outputs found

    LRH-1 mitigates intestinal inflammatory disease by maintaining epithelial homeostasis and cell survival.

    Get PDF
    Epithelial dysfunction and crypt destruction are defining features of inflammatory bowel disease (IBD). However, current IBD therapies targeting epithelial dysfunction are lacking. The nuclear receptor LRH-1 (NR5A2) is expressed in intestinal epithelium and thought to contribute to epithelial renewal. Here we show that LRH-1 maintains intestinal epithelial health and protects against inflammatory damage. Knocking out LRH-1 in murine intestinal organoids reduces Notch signaling, increases crypt cell death, distorts the cellular composition of the epithelium, and weakens the epithelial barrier. Human LRH-1 (hLRH-1) rescues epithelial integrity and when overexpressed, mitigates inflammatory damage in murine and human intestinal organoids, including those derived from IBD patients. Finally, hLRH-1 greatly reduces disease severity in T-cell-mediated murine colitis. Together with the failure of a ligand-incompetent hLRH-1 mutant to protect against TNFα-damage, these findings provide compelling evidence that hLRH-1 mediates epithelial homeostasis and is an attractive target for intestinal disease

    The Herbicide Atrazine Activates Endocrine Gene Networks via Non-Steroidal NR5A Nuclear Receptors in Fish and Mammalian Cells

    Get PDF
    Atrazine (ATR) remains a widely used broadleaf herbicide in the United States despite the fact that this s-chlorotriazine has been linked to reproductive abnormalities in fish and amphibians. Here, using zebrafish we report that environmentally relevant ATR concentrations elevated zcyp19a1 expression encoding aromatase (2.2 µg/L), and increased the ratio of female to male fish (22 µg/L). ATR selectively increased zcyp19a1, a known gene target of the nuclear receptor SF-1 (NR5A1), whereas zcyp19a2, which is estrogen responsive, remained unchanged. Remarkably, in mammalian cells ATR functions in a cell-specific manner to upregulate SF-1 targets and other genes critical for steroid synthesis and reproduction, including Cyp19A1, StAR, Cyp11A1, hCG, FSTL3, LHß, INHα, αGSU, and 11ß-HSD2. Our data appear to eliminate the possibility that ATR directly affects SF-1 DNA- or ligand-binding. Instead, we suggest that the stimulatory effects of ATR on the NR5A receptor subfamily (SF-1, LRH-1, and zff1d) are likely mediated by receptor phosphorylation, amplification of cAMP and PI3K signaling, and possibly an increase in the cAMP-responsive cellular kinase SGK-1, which is known to be upregulated in infertile women. Taken together, we propose that this pervasive and persistent environmental chemical alters hormone networks via convergence of NR5A activity and cAMP signaling, to potentially disrupt normal endocrine development and function in lower and higher vertebrates

    Glucocorticoid receptor activity regulates light adaptation in the zebrafish retina.

    Get PDF
    Glucocorticoids modulate diverse aspects of physiology and behavior, including energy homeostasis, stress response, and memory, through activation of the glucocorticoid receptor (GR). Light perception has profound effects on the production of glucocorticoids via functional connections of the retina to the hypothalamus-pituitary-adrenal axis. We report here that glucocorticoids can also signal in the reverse direction, i. e., regulate visual function in zebrafish, Danio rerio. The zebrafish GR mutant, gr (s357) , harbors a missense mutation that completely blocks the transcriptional activity of GR. In this mutant, visual behavior was abolished following a period of darkness and recovered sluggishly after return to the light. Electrophysiological measurements showed that the photoresponse of the dark-adapted retina was reduced in the mutant and re-adapted to light with a substantial delay. Several gene products, including some that are important for dopaminergic signaling, were misregulated in gr (s357) mutants. We suggest that GR controls a gene network required for visual adaptation in the zebrafish retina and potentially integrates neuroendocrine and sensory responses to environmental changes

    Dilp-2–mediated PI3-kinase activation coordinates reactivation of quiescent neuroblasts with growth of their glial stem cell niche

    No full text
    Dietary nutrients provide macromolecules necessary for organism growth and development. In response to animal feeding, evolutionarily conserved growth signaling pathways are activated, leading to increased rates of cell proliferation and tissue growth. It remains unclear how different cell types within developing tissues coordinate growth in response to dietary nutrients and whether coordinated growth of different cell types is necessary for proper tissue function. Using the early Drosophila larval brain, we asked whether nutrient-dependent growth of neural stem cells (neuroblasts), glia, and trachea is coordinated and whether coordinated growth among these major brain cell types is required for neural development. It is known that in response to dietary nutrients and PI3-kinase activation, brain and ventral nerve cord neuroblasts reactivate from quiescence and ventral nerve cord glia expand their membranes. Here, we assay growth in a cell-type specific manner at short time intervals in the brain and determine that growth is coordinated among different cell types and that coordinated growth is mediated in part through activation of PI3-kinase signaling. Of the 7 Drosophila insulin-like peptides (Dilps), we find that Dilp-2 is required for PI3-kinase activation and growth coordination between neuroblasts and glia in the brain. Dilp-2 induces brain cortex glia to initiate membrane growth and make first contact with quiescent neuroblasts. Once reactivated, neuroblasts promote cortex glia growth to ultimately form a selective membrane barrier. Our results highlight the importance of bidirectional growth signaling between neural stem cells and surrounding cell types in the brain in response to nutrition and demonstrate how coordinated growth among different cell types drives tissue morphogenesis and function

    Dilp-2-mediated PI3-kinase activation coordinates reactivation of quiescent neuroblasts with growth of their glial stem cell niche.

    No full text
    Dietary nutrients provide macromolecules necessary for organism growth and development. In response to animal feeding, evolutionarily conserved growth signaling pathways are activated, leading to increased rates of cell proliferation and tissue growth. It remains unclear how different cell types within developing tissues coordinate growth in response to dietary nutrients and whether coordinated growth of different cell types is necessary for proper tissue function. Using the early Drosophila larval brain, we asked whether nutrient-dependent growth of neural stem cells (neuroblasts), glia, and trachea is coordinated and whether coordinated growth among these major brain cell types is required for neural development. It is known that in response to dietary nutrients and PI3-kinase activation, brain and ventral nerve cord neuroblasts reactivate from quiescence and ventral nerve cord glia expand their membranes. Here, we assay growth in a cell-type specific manner at short time intervals in the brain and determine that growth is coordinated among different cell types and that coordinated growth is mediated in part through activation of PI3-kinase signaling. Of the 7 Drosophila insulin-like peptides (Dilps), we find that Dilp-2 is required for PI3-kinase activation and growth coordination between neuroblasts and glia in the brain. Dilp-2 induces brain cortex glia to initiate membrane growth and make first contact with quiescent neuroblasts. Once reactivated, neuroblasts promote cortex glia growth to ultimately form a selective membrane barrier. Our results highlight the importance of bidirectional growth signaling between neural stem cells and surrounding cell types in the brain in response to nutrition and demonstrate how coordinated growth among different cell types drives tissue morphogenesis and function

    The DEAD-Box Protein DP103 (Ddx20 or Gemin-3) Represses Orphan Nuclear Receptor Activity via SUMO Modification

    Get PDF
    Structural analysis of nuclear receptor subfamily V orphan nuclear receptors suggests that ligand-independent mechanisms must regulate this subclass of receptors. Here, we report that steroidogenic factor 1 (SF-1) and liver receptor homolog 1 are repressed via posttranslational SUMO modification at conserved lysines within the hinge domain. Indeed, mutating these lysines or adding the SUMO isopeptidase SENP1 dramatically increased both native and Gal4-chimera receptor activities. The mechanism by which SUMO conjugation attenuates SF-1 activity was found to be largely histone deacetylase independent and was unaffected by the AF2 corepressor Dax1. Instead, our data suggest that SUMO-mediated repression involves direct interaction of the DEAD-box protein DP103 with sumoylated SF-1. Of potential E3-SUMO ligase candidates, PIASy and PIASxα strongly promoted SF-1 sumoylation, and addition of DP103 enhanced both PIAS-dependent receptor sumoylation and SF-1 relocalization to discrete nuclear bodies. Taken together, we propose that DEAD-box RNA helicases are directly coupled to transcriptional repression by protein sumoylation
    corecore