31 research outputs found

    Children's body mass index, participation in school meals, and observed energy intake at school meals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Data from a dietary-reporting validation study with fourth-grade children were analyzed to investigate a possible relationship of body mass index (BMI) with daily participation in school meals and observed energy intake at school meals, and whether the relationships differed by breakfast location (classroom; cafeteria).</p> <p>Methods</p> <p>Data were collected in 17, 17, and 8 schools during three school years. For the three years, six, six, and seven of the schools had breakfast in the classroom; all other schools had breakfast in the cafeteria. Information about 180 days of school breakfast and school lunch participation during fourth grade for each of 1,571 children (90% Black; 53% girls) was available in electronic administrative records from the school district. Children were weighed and measured, and BMI was calculated. Each of a subset of 465 children (95% Black; 49% girls) was observed eating school breakfast and school lunch on the same day. Mixed-effects regression was conducted with BMI as the dependent variable and school as the random effect; independent variables were breakfast participation, lunch participation, combined participation (breakfast and lunch on the same day), average observed energy intake for breakfast, average observed energy intake for lunch, sex, age, breakfast location, and school year. Analyses were repeated for BMI category (underweight/healthy weight; overweight; obese; severely obese) using pooled ordered logistic regression models that excluded sex and age.</p> <p>Results</p> <p>Breakfast participation, lunch participation, and combined participation were not significantly associated with BMI or BMI category irrespective of whether the model included observed energy intake at school meals. Observed energy intake at school meals was significantly and positively associated with BMI and BMI category. For the total sample and subset, breakfast location was significantly associated with BMI; average BMI was larger for children with breakfast in the classroom than in the cafeteria. Significantly more kilocalories were observed eaten at breakfast in the classroom than in the cafeteria.</p> <p>Conclusions</p> <p>For fourth-grade children, results provide evidence of a positive relationship between BMI and observed energy intake at school meals, and between BMI and school breakfast in the classroom; however, BMI and participation in school meals were not significantly associated.</p

    How accurate are parental responses concerning their fourth-grade children's school-meal participation, and what is the relationship between children's body mass index and school-meal participation based on parental responses?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This article investigated (1) parental response accuracy of fourth-grade children's school-meal participation and whether accuracy differed by children's body mass index (BMI), sex, and race, and (2) the relationship between BMI and school-meal participation (based on parental responses).</p> <p>Methods</p> <p>Data were from four cross-sectional studies conducted from fall 1999 to spring 2003 with fourth-grade children from 13 schools total. Consent forms asked parents to report children's usual school-meal participation. As two studies' consent forms did not ask about lunch participation, complete data were available for breakfast on 1,496 children (51% Black; 49% boys) and for lunch on 785 children (46% Black; 48% boys). Researchers compiled nametag records (during meal observations) of meal participation on randomly selected days during children's fourth-grade school year for breakfast (average nametag days across studies: 7-35) and for lunch (average nametag days across studies: 4-10) and categorized participation as "usually" (ā‰„ 50% of days) or "not usually" (< 50% of days). Weight and height were measured. Concerning parental response accuracy, marginal regression was used with agreement between parental responses and nametag records as the dependent variable; independent variables were BMI, age, sex, race, and study. Concerning a relationship between BMI and school-meal participation, marginal regression was used with BMI as the dependent variable; independent variables were breakfast participation, lunch participation, age, sex, race, and study.</p> <p>Results</p> <p>Concerning breakfast participation and lunch participation, 74% and 92% of parents provided accurate responses, respectively. Parental response accuracy was better for older children for breakfast and lunch participation, and for Black than White children for lunch participation. Usual school-meal participation was significantly related to children's BMI but in opposite directions -- positively for breakfast and inversely for lunch.</p> <p>Conclusions</p> <p>Parental response accuracy of children's school-meal participation was moderately high; however, disparate effects for children's age and race warrant caution when relying on parental responses. The BMI results, which showed a relationship between school-meal participation (based on parental responses) and childhood obesity, conflict with results from a recent article that used data from the same four studies and found no significant relationship when participation was based on nametag records compiled for meal observations.</p

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Epsin 1 Promotes Synaptic Growth by Enhancing BMP Signal Levels in Motoneuron Nuclei

    Get PDF
    We thank Carl-Henrik Heldin (Uppsala University, Sweden) for his generous gift of the PS1 pMad antibody, Hugo Bellen, Corey Goodman, Janis Fischer, Graeme Davis, Guillermo Marques, Michael O'Connor, Kate O'Connor-Giles, and the Bloomington Drosophila Stock Center for flies strains, the Developmental Studies Hybridoma Bank at the University of Iowa for antibodies to Wit and CSP; Marie Phillips for advice on membrane fractionation; Avital Rodal, Kate O'Connor-Giles, Ela Serpe, Kristi Wharton, Mojgan Padash-Barmchi for discussions or comments on the manuscript. We also thank Jody Summers at OUHSC for her generosity in letting us to use her confocal microscope.Conceived and designed the experiments: PAV TRF LRC BZ. Performed the experiments: PAV TRF LRC SMR HB NER BZ. Analyzed the data: PAV TRF LRC SMR HB NER BZ. Wrote the paper: PAV TRF BZ.Bone morphogenetic protein (BMP) retrograde signaling is crucial for neuronal development and synaptic plasticity. However, how the BMP effector phospho-Mother against decapentaplegic (pMad) is processed following receptor activation remains poorly understood. Here we show that Drosophila Epsin1/Liquid facets (Lqf) positively regulates synaptic growth through post-endocytotic processing of pMad signaling complex. Lqf and the BMP receptor Wishful thinking (Wit) interact genetically and biochemically. lqf loss of function (LOF) reduces bouton number whereas overexpression of lqf stimulates bouton growth. Lqf-stimulated synaptic overgrowth is suppressed by genetic reduction of wit. Further, synaptic pMad fails to accumulate inside the motoneuron nuclei in lqf mutants and lqf suppresses synaptic overgrowth in spinster (spin) mutants with enhanced BMP signaling by reducing accumulation of nuclear pMad. Interestingly, lqf mutations reduce nuclear pMad levels without causing an apparent blockage of axonal transport itself. Finally, overexpression of Lqf significantly increases the number of multivesicular bodies (MVBs) in the synapse whereas lqf LOF reduces MVB formation, indicating that Lqf may function in signaling endosome recycling or maturation. Based on these observations, we propose that Lqf plays a novel endosomal role to ensure efficient retrograde transport of BMP signaling endosomes into motoneuron nuclei.Yeshttp://www.plosone.org/static/editorial#pee

    Predicting and Testing Physical Locations of Genetically Mapped Loci on Tomato Pachytene Chromosome 1

    No full text
    Predicting the chromosomal location of mapped markers has been difficult because linkage maps do not reveal differences in crossover frequencies along the physical structure of chromosomes. Here we combine a physical crossover map based on the distribution of recombination nodules (RNs) on Solanum lycopersicum (tomato) synaptonemal complex 1 with a molecular genetic linkage map from the interspecific hybrid S. lycopersicum Ɨ S. pennellii to predict the physical locations of 17 mapped loci on tomato pachytene chromosome 1. Except for one marker located in heterochromatin, the predicted locations agree well with the observed locations determined by fluorescence in situ hybridization. One advantage of this approach is that once the RN distribution has been determined, the chromosomal location of any mapped locus (current or future) can be predicted with a high level of confidence
    corecore