10 research outputs found

    Anticoagulation management during pulmonary endarterectomy with cardiopulmonary bypass and deep hypothermic circulatory arrest

    No full text
    INTRODUCTION: Pulmonary endarterectomy requires cardiopulmonary bypass and deep hypothermic circulatory arrest, which may prolong the activated clotting time. We investigated whether activated clotting time-guided anticoagulation under these circumstances suppresses hemostatic activation. METHODS: Individual heparin sensitivity was determined by the heparin dose-response test, and anticoagulation was monitored by the activated clotting time and heparin concentration. Perioperative hemostasis was evaluated by thromboelastometry, platelet aggregation, and several plasma coagulation markers. RESULTS: Eighteen patients were included in this study. During cooling, tube-based activated clotting time increased from 719 (95% confidence interval = 566-872 seconds) to 1,273 (95% confidence interval = 1,136-1,410 seconds; p 240 seconds. Platelet aggregation through activation of the P2Y12 (adenosine diphosphate test) and thrombin receptor (thrombin receptor activating peptide-6 test) decreased (both -33%) and PF4 levels almost doubled (from 48 (95% confidence interval = 42-53 ng/mL) to 77 (95% confidence interval = 71-82 ng/mL); p < 0.01) between weaning from cardiopulmonary bypass and 3 minutes after protamine administration. CONCLUSION: This study shows a wide variation in individual heparin sensitivity in patients undergoing pulmonary endarterectomy with deep hypothermic circulatory arrest. Although activated clotting time-guided anticoagulation management may underestimate the level of anticoagulation and consequently result in a less profound inhibition of hemostatic activation, this study lacked power to detect adverse outcomes

    Validation of the ACR-EULAR criteria for primary Sjogren's syndrome in a Dutch prospective diagnostic cohort

    Get PDF
    Objectives. To validate the ACR-EULAR classification criteria for primary SS (pSS), and compare them to the American-European Consensus Group (AECG) and ACR criteria in a Dutch prospective diagnostic cohort. Methods. Consecutive patients (n = 129) referred for suspicion of pSS underwent a multidisciplinary evaluation, including a labial and/or parotid gland biopsy. Patients with an incomplete work-up (n= 8) or associated systemic auto-immune disease (n= 7) were excluded. The ACR-EULAR classification was compared with expert classification, AECG and ACR classification. Additionally, the accuracy of individual ACR-EULAR items in discriminating pSS from non-pSS was evaluated. The validity of criteria sets was described separately using parotid or labial gland biopsy results for classification. Results. Of the 114 evaluated patients, the expert panel classified 34 (30%) as pSS and 80 (70%) as non-pSS. Using labial gland biopsy results, ACR-EULAR classification showed 87% absolute agreement (kappa = 0.73) with expert classification, with a sensitivity of 97% and specificity of 83%. Using the parotid gland biopsy results, the ACR-EULAR criteria performed excellently as well. Focus score, anti-SSA titre and ocular staining score showed good to excellent accuracy, whereas unstimulated whole saliva and Schirmer's test had poor accuracy. The ACR-EULAR and AECG criteria had equal validity. Compared with ACR classification, ACR-EULAR classification showed higher sensitivity but lower specificity. Conclusion. The ACR-EULAR criteria showed good agreement with expert classification, but some patients may be misclassified as pSS. Unstimulated whole saliva and Schirmer's test showed poor discriminative value. The ACR-EULAR criteria performed equally to the AECG criteria, and had higher sensitivity but lower specificity than the ACR criteria

    Moderate hyperoxic versus near-physiological oxygen targets during and after coronary artery bypass surgery: a randomised controlled trial

    No full text
    BACKGROUND: The safety of perioperative hyperoxia is currently unclear. Previous studies in patients undergoing coronary artery bypass surgery suggest reduced myocardial damage when avoiding extreme perioperative hyperoxia (>400 mmHg). In this study we investigated whether an oxygenation strategy from moderate hyperoxia to a near-physiological oxygen tension reduces myocardial damage and improves haemodynamics, organ dysfunction and oxidative stress. METHODS: This was a single-blind, single-centre, open-label, randomised controlled trial in patients undergoing elective coronary artery bypass surgery. Fifty patients were randomised to a partial pressure of oxygen in arterial blood (P(a)O(2)) target of 200–220 mmHg during cardiopulmonary bypass and 130–150 mmHg during intensive care unit (ICU) admission (control group) versus lower targets of 130–150 mmHg during cardiopulmonary bypass and 80–100 mmHg at the ICU (conservative group). Primary outcome was myocardial injury (CK-MB and Troponin-T) at ICU admission and 2, 6 and 12 hours thereafter. RESULTS: Weighted P(a)O(2) during cardiopulmonary bypass was 220 mmHg (interquartile range (IQR) 211–233) vs. 157 (151–162) in the control and conservative group, respectively (P < 0.0001). During ICU admission, weighted P(a)O(2) was 107 mmHg (86–141) vs. 90 (84–98) (P = 0.03), respectively. Area under the curve of CK-MB was median 23.5 μg/L/h (IQR 18.4–28.1) vs. 21.5 (15.8–26.6) (P = 0.35) and 0.30 μg/L/h (0.25–0.44) vs. 0.39 (0.24–0.43) (P = 0.81) for Troponin-T. Cardiac index, systemic vascular resistance index, creatinine, lactate and F2-isoprostane levels were not different between groups. CONCLUSIONS: Compared to moderate hyperoxia, a near-physiological oxygen strategy does not reduce myocardial damage in patients undergoing coronary artery bypass surgery. Conservative oxygen administration was not associated with increased lactate levels or hypoxic events. TRIAL REGISTRATION: Netherlands Trial Registry NTR4375, registered on 30 January 2014 ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13054-016-1240-6) contains supplementary material, which is available to authorized users

    Fourth mRNA COVID-19 vaccination in immunocompromised patients with haematological malignancies (COBRA KAI): a cohort study.

    Get PDF
    Background: Patients with haematological malignancies have impaired antibody responses to SARS-CoV-2 vaccination. We aimed to investigate whether a fourth mRNA COVID-19 vaccination improved antibody quantity and quality. Methods: In this cohort study, conducted at 5 sites in the Netherlands, we compared antibody concentrations 28 days after 4 mRNA vaccinations (3-dose primary series plus 1 booster vaccination) in SARS-CoV-2 naive, immunocompromised patients with haematological malignancies to those obtained by age-matched, healthy individuals who had received the standard primary 2-dose mRNA vaccination schedule followed by a first booster mRNA vaccination. Prior to and 4 weeks after each vaccination, peripheral blood samples and data on demographic parameters and medical history were collected. Concentrations of antibodies that bind spike 1 (S1) and nucleocapsid (N) protein of SARS-CoV-2 were quantified in binding antibody units (BAU) per mL according to the WHO International Standard for COVID-19 serological tests. Seroconversion was defined as an S1 IgG concentration &gt;10 BAU/mL and a previous SARS-CoV-2 infection as N IgG &gt;14.3 BAU/mL. Antibody neutralising activity was tested using lentiviral-based pseudoviruses expressing spike protein of SARS-CoV-2 wild-type (D614G), Omicron BA.1, and Omicron BA.4/5 variants. This study is registered with EudraCT, number 2021-001072-41. Findings: Between March 24, 2021 and May 4, 2021, 723 patients with haematological diseases were enrolled, of which 414 fulfilled the inclusion criteria for the current analysis. Although S1 IgG concentrations in patients significantly improved after the fourth dose, they remained significantly lower compared to those obtained by 58 age-matched healthy individuals after their first booster (third) vaccination. The rise in neutralising antibody concentration was most prominent in patients with a recovering B cell compartment, although potent responses were also observed in patients with persistent immunodeficiencies. 19% of patients never seroconverted, despite 4 vaccinations. Patients who received their first 2 vaccinations when they were B cell depleted and the third and fourth vaccination during B cell recovery demonstrated similar antibody induction dynamics as patients with normal B cell numbers during the first 2 vaccinations. However, the neutralising capacity of these antibodies was significantly better than that of patients with normal B cell numbers after two vaccinations. Interpretation: A fourth mRNA COVID-19 vaccination improved S1 IgG concentrations in the majority of patients with a haematological malignancy. Vaccination during B cell depletion may pave the way for better quality of antibody responses after B cell reconstitution. Funding: The Netherlands Organisation for Health Research and Development and Amsterdam UMC.</p

    Fourth mRNA COVID-19 vaccination in immunocompromised patients with haematological malignancies (COBRA KAI): a cohort studyResearch in context

    No full text
    Summary: Background: Patients with haematological malignancies have impaired antibody responses to SARS-CoV-2 vaccination. We aimed to investigate whether a fourth mRNA COVID-19 vaccination improved antibody quantity and quality. Methods: In this cohort study, conducted at 5 sites in the Netherlands, we compared antibody concentrations 28 days after 4 mRNA vaccinations (3-dose primary series plus 1 booster vaccination) in SARS-CoV-2 naive, immunocompromised patients with haematological malignancies to those obtained by age-matched, healthy individuals who had received the standard primary 2-dose mRNA vaccination schedule followed by a first booster mRNA vaccination. Prior to and 4 weeks after each vaccination, peripheral blood samples and data on demographic parameters and medical history were collected. Concentrations of antibodies that bind spike 1 (S1) and nucleocapsid (N) protein of SARS-CoV-2 were quantified in binding antibody units (BAU) per mL according to the WHO International Standard for COVID-19 serological tests. Seroconversion was defined as an S1 IgG concentration >10 BAU/mL and a previous SARS-CoV-2 infection as N IgG >14.3 BAU/mL. Antibody neutralising activity was tested using lentiviral-based pseudoviruses expressing spike protein of SARS-CoV-2 wild-type (D614G), Omicron BA.1, and Omicron BA.4/5 variants. This study is registered with EudraCT, number 2021-001072-41. Findings: Between March 24, 2021 and May 4, 2021, 723 patients with haematological diseases were enrolled, of which 414 fulfilled the inclusion criteria for the current analysis. Although S1 IgG concentrations in patients significantly improved after the fourth dose, they remained significantly lower compared to those obtained by 58 age-matched healthy individuals after their first booster (third) vaccination. The rise in neutralising antibody concentration was most prominent in patients with a recovering B cell compartment, although potent responses were also observed in patients with persistent immunodeficiencies. 19% of patients never seroconverted, despite 4 vaccinations. Patients who received their first 2 vaccinations when they were B cell depleted and the third and fourth vaccination during B cell recovery demonstrated similar antibody induction dynamics as patients with normal B cell numbers during the first 2 vaccinations. However, the neutralising capacity of these antibodies was significantly better than that of patients with normal B cell numbers after two vaccinations. Interpretation: A fourth mRNA COVID-19 vaccination improved S1 IgG concentrations in the majority of patients with a haematological malignancy. Vaccination during B cell depletion may pave the way for better quality of antibody responses after B cell reconstitution. Funding: The Netherlands Organisation for Health Research and Development and Amsterdam UMC
    corecore