16 research outputs found

    Self-Assembly of Nanorod Motors into Geometrically Regular Multimers and Their Propulsion by Ultrasound

    No full text
    Segmented goldā€“ruthenium nanorods (300 Ā± 30 nm in diameter and 2.0 Ā± 0.2 Ī¼m in length) with thin Ni segments at one end assemble into few-particle, geometrically regular dimers, trimers, and higher multimers while levitated in water by āˆ¼4 MHz ultrasound at the midpoint of a cylindrical acoustic cell. The assembly of the nanorods into multimers is controlled by interactions between the ferromagnetic Ni segments. These assemblies are propelled autonomously in fluids by excitation with āˆ¼4 MHz ultrasound and exhibit several distinct modes of motion. Multimer assembly and disassembly are dynamic in the ultrasonic field. The relative numbers of monomers, dimers, trimers, and higher multimers are dependent upon the number density of particles in the fluid and their speed, which is in turn determined by the ultrasonic power applied. The magnetic binding energy of the multimers estimated from their speed-dependent equilibria is in agreement with the calculated strength of the magnetic dipole interactions. These autonomously propelled multimers can also be steered with an external magnetic field and remain intact after removal from the acoustic chamber for SEM imaging

    From One to Many: Dynamic Assembly and Collective Behavior of Self-Propelled Colloidal Motors

    No full text
    ConspectusThe assembly of complex structures from simpler, individual units is a hallmark of biology. Examples include the pairing of DNA strands, the assembly of protein chains into quaternary structures, the formation of tissues and organs from cells, and the self-organization of bacterial colonies, flocks of birds, and human beings in cities. While the individual behaviors of biomolecules, bacteria, birds, and humans are governed by relatively simple rules, groups assembled from many individuals exhibit complex collective behaviors and functions that do not exist in the absence of the hierarchically organized structure.Self-assembly is a familiar concept to chemists who study the formation and properties of monolayers, crystals, and supramolecular structures. In chemical self-assembly, disorder evolves to order as the system approaches equilibrium. In contrast, living assemblies are typically characterized by two additional features: (1) the system constantly dissipates energy and is not at thermodynamic equilibrium; (2) the structure is dynamic and can transform or disassemble in response to stimuli or changing conditions. To distinguish them from equilibrium self-assembled structures, living (or nonliving) assemblies of objects with these characteristics are referred to as <i>active matter.</i>In this Account, we focus on the powered assembly and collective behavior of <i>self-propelled colloids</i>. These nano- and microparticles, also called <i>nano-</i> and <i>micromotors</i> or <i>microswimmers</i>, autonomously convert energy available in the environment (in the form of chemical, electromagnetic, acoustic, or thermal energy) into mechanical motion. Collections of these colloids are a form of synthetic active matter. Because of the analogy to living swimmers of similar size such as bacteria, the dynamic interactions and collective behavior of self-propelled colloids are interesting in the context of understanding biological active matter and in the development of new applications. The progression from individual particle motion to pairwise interactions, and then to multiparticle behavior, can be studied systematically with colloidal particles. Colloidal particles are also amenable to designs (in terms of materials, shapes, and sizes) that are not readily available in, for example, microbial systems. We review here our efforts and those of other groups in studying these fundamental interactions and the collective behavior that emerges from them. Although this field is still very new, there are already unique and interesting applications in analysis, diagnostics, separations, and materials science that derive from our understanding of how powered colloids interact and assemble

    Density and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors

    No full text
    Bimetallic nanorods are propelled without chemical fuels in megahertz (MHz) acoustic fields, and exhibit similar behaviors to single-metal rods, including autonomous axial propulsion and organization into spinning chains. Shape asymmetry determines the direction of axial movement of bimetallic rods when there is a small difference in density between the two metals. Movement toward the concave end of these rods is inconsistent with a scattering mechanism that we proposed earlier for acoustic propulsion, but is consistent with an acoustic streaming model developed more recently by Nadal and Lauga (Phys. Fluids 2014, 26, 082001). Longer rods were slower at constant power, and their speed was proportional to the square of the power density, in agreement with the acoustic streaming model. The streaming model was further supported by a correlation between the disassembly of spinning chains of rods and a sharp decrease in the axial speed of autonomously moving motors within the levitation plane of the cylindrical acoustic cell. However, with bimetallic rods containing metals of different densities, a consistent polarity of motion was observed with the lighter metal end leading. Speed comparisons between single-metal rods of different densities showed that those of lower density are propelled faster. So far, these density effects are not explained in the streaming model. The directionality of bimetallic rods in acoustic fields is intriguing and offers some new possibilities for designing motors in which shape, material, and chemical asymmetry might be combined for enhanced functionality

    Shape-Directed Microspinners Powered by Ultrasound

    No full text
    The propulsion of micro- and nanoparticles using ultrasound is an attractive strategy for the remote manipulation of colloidal matter using biocompatible energy inputs. However, the physical mechanisms underlying acoustic propulsion are poorly understood, and our ability to transduce acoustic energy into different types of particle motions remains limited. Here, we show that the three-dimensional shape of a colloidal particle can be rationally engineered to direct desired particle motions powered by ultrasound. We investigate the dynamics of gold microplates with twisted star shape (<i>C</i><sub><i>nh</i></sub> symmetry) moving within the nodal plane of a uniform acoustic field at megahertz frequencies. By systematically perturbing the parametric shape of these ā€œspinnersā€, we quantify the relationship between the particle shape and its rotational motion. The experimental observations are reproduced and explained by hydrodynamic simulations that describe the steady streaming flows and particle motions induced by ultrasonic actuation. Our results suggest how particle shape can be used to design colloids capable of increasingly complex motions powered by ultrasound

    Shape-Directed Microspinners Powered by Ultrasound

    No full text
    The propulsion of micro- and nanoparticles using ultrasound is an attractive strategy for the remote manipulation of colloidal matter using biocompatible energy inputs. However, the physical mechanisms underlying acoustic propulsion are poorly understood, and our ability to transduce acoustic energy into different types of particle motions remains limited. Here, we show that the three-dimensional shape of a colloidal particle can be rationally engineered to direct desired particle motions powered by ultrasound. We investigate the dynamics of gold microplates with twisted star shape (<i>C</i><sub><i>nh</i></sub> symmetry) moving within the nodal plane of a uniform acoustic field at megahertz frequencies. By systematically perturbing the parametric shape of these ā€œspinnersā€, we quantify the relationship between the particle shape and its rotational motion. The experimental observations are reproduced and explained by hydrodynamic simulations that describe the steady streaming flows and particle motions induced by ultrasonic actuation. Our results suggest how particle shape can be used to design colloids capable of increasingly complex motions powered by ultrasound

    Shape-Directed Microspinners Powered by Ultrasound

    No full text
    The propulsion of micro- and nanoparticles using ultrasound is an attractive strategy for the remote manipulation of colloidal matter using biocompatible energy inputs. However, the physical mechanisms underlying acoustic propulsion are poorly understood, and our ability to transduce acoustic energy into different types of particle motions remains limited. Here, we show that the three-dimensional shape of a colloidal particle can be rationally engineered to direct desired particle motions powered by ultrasound. We investigate the dynamics of gold microplates with twisted star shape (<i>C</i><sub><i>nh</i></sub> symmetry) moving within the nodal plane of a uniform acoustic field at megahertz frequencies. By systematically perturbing the parametric shape of these ā€œspinnersā€, we quantify the relationship between the particle shape and its rotational motion. The experimental observations are reproduced and explained by hydrodynamic simulations that describe the steady streaming flows and particle motions induced by ultrasonic actuation. Our results suggest how particle shape can be used to design colloids capable of increasingly complex motions powered by ultrasound

    Shape-Directed Microspinners Powered by Ultrasound

    No full text
    The propulsion of micro- and nanoparticles using ultrasound is an attractive strategy for the remote manipulation of colloidal matter using biocompatible energy inputs. However, the physical mechanisms underlying acoustic propulsion are poorly understood, and our ability to transduce acoustic energy into different types of particle motions remains limited. Here, we show that the three-dimensional shape of a colloidal particle can be rationally engineered to direct desired particle motions powered by ultrasound. We investigate the dynamics of gold microplates with twisted star shape (<i>C</i><sub><i>nh</i></sub> symmetry) moving within the nodal plane of a uniform acoustic field at megahertz frequencies. By systematically perturbing the parametric shape of these ā€œspinnersā€, we quantify the relationship between the particle shape and its rotational motion. The experimental observations are reproduced and explained by hydrodynamic simulations that describe the steady streaming flows and particle motions induced by ultrasonic actuation. Our results suggest how particle shape can be used to design colloids capable of increasingly complex motions powered by ultrasound

    Shape-Directed Microspinners Powered by Ultrasound

    No full text
    The propulsion of micro- and nanoparticles using ultrasound is an attractive strategy for the remote manipulation of colloidal matter using biocompatible energy inputs. However, the physical mechanisms underlying acoustic propulsion are poorly understood, and our ability to transduce acoustic energy into different types of particle motions remains limited. Here, we show that the three-dimensional shape of a colloidal particle can be rationally engineered to direct desired particle motions powered by ultrasound. We investigate the dynamics of gold microplates with twisted star shape (<i>C</i><sub><i>nh</i></sub> symmetry) moving within the nodal plane of a uniform acoustic field at megahertz frequencies. By systematically perturbing the parametric shape of these ā€œspinnersā€, we quantify the relationship between the particle shape and its rotational motion. The experimental observations are reproduced and explained by hydrodynamic simulations that describe the steady streaming flows and particle motions induced by ultrasonic actuation. Our results suggest how particle shape can be used to design colloids capable of increasingly complex motions powered by ultrasound

    Shape-Directed Microspinners Powered by Ultrasound

    No full text
    The propulsion of micro- and nanoparticles using ultrasound is an attractive strategy for the remote manipulation of colloidal matter using biocompatible energy inputs. However, the physical mechanisms underlying acoustic propulsion are poorly understood, and our ability to transduce acoustic energy into different types of particle motions remains limited. Here, we show that the three-dimensional shape of a colloidal particle can be rationally engineered to direct desired particle motions powered by ultrasound. We investigate the dynamics of gold microplates with twisted star shape (<i>C</i><sub><i>nh</i></sub> symmetry) moving within the nodal plane of a uniform acoustic field at megahertz frequencies. By systematically perturbing the parametric shape of these ā€œspinnersā€, we quantify the relationship between the particle shape and its rotational motion. The experimental observations are reproduced and explained by hydrodynamic simulations that describe the steady streaming flows and particle motions induced by ultrasonic actuation. Our results suggest how particle shape can be used to design colloids capable of increasingly complex motions powered by ultrasound

    Shape-Directed Microspinners Powered by Ultrasound

    No full text
    The propulsion of micro- and nanoparticles using ultrasound is an attractive strategy for the remote manipulation of colloidal matter using biocompatible energy inputs. However, the physical mechanisms underlying acoustic propulsion are poorly understood, and our ability to transduce acoustic energy into different types of particle motions remains limited. Here, we show that the three-dimensional shape of a colloidal particle can be rationally engineered to direct desired particle motions powered by ultrasound. We investigate the dynamics of gold microplates with twisted star shape (<i>C</i><sub><i>nh</i></sub> symmetry) moving within the nodal plane of a uniform acoustic field at megahertz frequencies. By systematically perturbing the parametric shape of these ā€œspinnersā€, we quantify the relationship between the particle shape and its rotational motion. The experimental observations are reproduced and explained by hydrodynamic simulations that describe the steady streaming flows and particle motions induced by ultrasonic actuation. Our results suggest how particle shape can be used to design colloids capable of increasingly complex motions powered by ultrasound
    corecore