12 research outputs found

    C/EBPĪ± overrides epigenetic reprogramming by oncogenic transcription factors in acute myeloid leukemia

    Get PDF
    Key Points C/EBPĪ± directly represses the leukemia maintenance program; however, the pattern of repressed genes is specific for each type of AML. Overexpression of C/EBPĪ± does not globally displace these proteins from their binding sites, but overrides their repressive activity.</jats:p

    The oncogenic transcription factor RUNX1/ETO corrupts cell cycle regulation to drive leukemic transformation

    Get PDF
    Oncogenic transcription factors such as the leukemic fusion protein RUNX1/ETO, which drives t(8;21) acute myeloid leukemia (AML), constitute cancer-specific but highly challenging therapeutic targets. We used epigenomic profiling data for an RNAi screen to interrogate the transcriptional network maintaining t(8;21) AML. This strategy identified Cyclin D2 (CCND2) as a crucial transmitter of RUNX1/ETO-driven leukemic propagation. RUNX1/ETO cooperates with AP-1 to drive CCND2 expression. Knockdown or pharmacological inhibition of CCND2 by an approved drug significantly impairs leukemic expansion of patient-derived AML cells and engraftment in immunodeficient murine hosts. Our data demonstrate that RUNX1/ETO maintains leukemia by promoting cell cycle progression and identifies G1 CCND-CDK complexes as promising therapeutic targets for treatment of RUNX1/ETO-driven AML

    Epigenetic regulator genes direct lineage switching in MLL/AF4 leukaemia

    Get PDF
    The fusion gene MLL/AF4 defines a high-risk subtype of pro-B acute lymphoblastic leukaemia. Relapse can be associated with a lineage switch from acute lymphoblastic to acute myeloid leukaemia resulting in poor clinical outcomes due to resistance towards chemo- and immuno-therapies. Here we show that the myeloid relapses share oncogene fusion breakpoints with their matched lymphoid presentations and can originate from varying differentiation stages from immature progenitors through to committed B-cell precursors. Lineage switching is linked to substantial changes in chromatin accessibility and rewiring of transcriptional programmes, including alternative splicing. These findings indicate that the execution and maintenance of lymphoid lineage differentiation is impaired. The relapsed myeloid phenotype is recurrently associated with the altered expression, splicing or mutation of chromatin modifiers, including CHD4 coding for the ATPase/helicase of the nucleosome remodelling and deacetylation complex, NuRD. Perturbation of CHD4 alone or in combination with other mutated epigenetic modifiers induces myeloid gene expression in MLL/AF4-positive cell models indicating that lineage switching in MLL/AF4 leukaemia is driven and maintained by disrupted epigenetic regulation

    RUNX1-ETO Depletion in t(8;21) AML Leads to C/EBPĪ±- and AP-1-Mediated Alterations in Enhancer-Promoter Interaction

    Get PDF
    Acute myeloid leukemia (AML) is associated with mutations in transcriptional and epigenetic regulator genes impairing myeloid differentiation. The t(8;21) (q22;q22) translocation generates the RUNX1-ETO fusion protein, which interferes with the hematopoietic master regulator RUNX1. We previously showed that the maintenance of t(8;21) AML is dependent on RUNX1-ETO expression. Its depletion causes extensive changes in transcription factor binding, as well as gene expression, and initiates myeloid differentiation. However, how these processes are connected within a gene regulatory network is unclear. To address this question, we performed Promoter-Capture Hi-C assays, with or without RUNX1-ETO depletion and assigned interacting cis-regulatory elements to their respective genes. To construct a RUNX1- ETO-dependent gene regulatory network maintaining AML, we integrated cis-regulatory element interactions with gene expression and transcription factor binding data. This analysis shows that RUNX1-ETO participates in cis-regulatory element interactions. However, differential interactions following RUNX1- ETO depletion are driven by alterations in the binding of RUNX1-ETO-regulated transcription factors
    corecore