8 research outputs found

    Rapid analysis for the identification of the seagrass Halophila ovalis (Hydrocharitaceae)

    Get PDF
    Seagrasses are considered as one of the most important species as they play key ecological roles in various types of ecosystems and also provide a food source for endangered animal species. There are two main  characteristics of seagrasses that hinder efforts to correctly identify species based on conventional identification keys alone: i) the variability of  morphological characteristics and ii) lack of needed morphological  characters especially flowers. A taxonomically unresolved complex such as Halophila spp. is reported. Plant DNA barcoding regions (rbcL and trnH-psbA) were used to confirm species of collected seagrasses from the southern coast of Thailand. Small and big-leaved samples of Halophila spp. were analysed in this study. The big-leaved samples were identified on the field as Halophila ovalis whilst it was uncertain whether the small-leaved samples belonged to H. ovalis. DNA analysis revealed that the small-leaved samples could be H. ovalis. We also coupled PCR with high resolution melt (HRM) to more cost-effectively identify individuals of H. ovilis than using barcoding alone. Using HRM to resolve differences in the sequence of two genes showed that the two unknown seagrasses belonged to the same species as H. ovalis.  In conclusion, using HRM proved to pose great potential in seagrass identification. Key words: DNA barcoding, Halophila ovalis, rbcL, trnH-psbA, species identification

    Complete mitochondrial genome of the Thai Red Junglefowl (Gallus gallus) and phylogenetic analysis

    No full text
    In this study, we sequenced the complete mitochondrial genome (mitogenome) of the Thai Red Junglefowl (RJF; Gallus gallus) using the next-generation sequencing (NGS) platform of the Ion Torrent PGM. Samples were taken from Mae Wang District, Chiang Mai Province, northern Thailand. Our data showed the complete mitogenome to be 16 785 bp in length, composed by 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and one control region. The genome nucleotide composition was 30.3% A, 23.7% T, 32.5% C, and 13.5% G, resulting in a high percentage of A+T (50.4%). Phylogenetic analysis revealed that the mitogenome belonged to haplogroup X, whereas those of all domestic chickens belong to haplogroups A to G. This newly released mitogenome sequence will advance further evolutionary and population genetics study of the RJF and domestic chicken. The availability of the G. gallus mitogenome will also contribute to further conservation genetics research of a unique species, listed as ‘data deficient’ in Thailand

    863 genomes reveal the origin and domestication of chicken

    No full text
    Despite the substantial role that chickens have played in human societies across the world, both the geographic and temporal origins of their domestication remain controversial. To address this issue, we analyzed 863 genomes from a worldwide sampling of chickens and representatives of all four species of wild jungle fowl and each of the five subspecies of red jungle fowl (RJF). Our study suggests that domestic chickens were initially derived from the RJF subspecies Gallus gallus spadiceus whose present-day distribution is predominantly in southwestern China, northern Thailand and Myanmar. Following their domestication, chickens were translocated across Southeast and South Asia where they interbred locally with both RJF subspecies and other jungle fowl species. In addition, our results show that the White Leghorn chicken breed possesses a mosaic of divergent ancestries inherited from other subspecies of RJF. Despite the strong episodic gene flow from geographically divergent lineages of jungle fowls, our analyses show that domestic chickens undergo genetic adaptations that underlie their unique behavioral, morphological and reproductive traits. Our study provides novel insights into the evolutionary history of domestic chickens and a valuable resource to facilitate ongoing genetic and functional investigations of the world’s most numerous domestic animal

    863 genomes reveal the origin and domestication of chicken

    No full text
    Despite the substantial role that chickens have played in human societies across the world, both the geographic and temporal origins of their domestication remain controversial. To address this issue, we analyzed 863 genomes from a worldwide sampling of chickens and representatives of all four species of wild jungle fowl and each of the five subspecies of red jungle fowl (RJF). Our study suggests that domestic chickens were initially derived from the RJF subspecies Gallus gallus spadiceus whose present-day distribution is predominantly in southwestern China, northern Thailand and Myanmar. Following their domestication, chickens were translocated across Southeast and South Asia where they interbred locally with both RJF subspecies and other jungle fowl species. In addition, our results show that the White Leghorn chicken breed possesses a mosaic of divergent ancestries inherited from other subspecies of RJF. Despite the strong episodic gene flow from geographically divergent lineages of jungle fowls, our analyses show that domestic chickens undergo genetic adaptations that underlie their unique behavioral, morphological and reproductive traits. Our study provides novel insights into the evolutionary history of domestic chickens and a valuable resource to facilitate ongoing genetic and functional investigations of the world’s most numerous domestic animal
    corecore