9 research outputs found

    Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and Prospectively Validated

    Get PDF
    PURPOSE: Meningiomas are the most frequent primary intracranial tumors. Patient outcome varies widely from benign to highly aggressive, ultimately fatal courses. Reliable identification of risk of progression for individual patients is of pivotal importance. However, only biomarkers for highly aggressive tumors are established (CDKN2A/B and TERT), whereas no molecularly based stratification exists for the broad spectrum of patients with low- and intermediate-risk meningioma. METHODS: DNA methylation data and copy-number information were generated for 3,031 meningiomas (2,868 patients), and mutation data for 858 samples. DNA methylation subgroups, copy-number variations (CNVs), mutations, and WHO grading were analyzed. Prediction power for outcome was assessed in a retrospective cohort of 514 patients, validated on a retrospective cohort of 184, and on a prospective cohort of 287 multicenter cases. RESULTS: Both CNV- and methylation family-based subgrouping independently resulted in increased prediction accuracy of risk of recurrence compared with the WHO classification (c-indexes WHO 2016, CNV, and methylation family 0.699, 0.706, and 0.721, respectively). Merging all risk stratification approaches into an integrated molecular-morphologic score resulted in further substantial increase in accuracy (c-index 0.744). This integrated score consistently provided superior accuracy in all three cohorts, significantly outperforming WHO grading (c-index difference P = .005). Besides the overall stratification advantage, the integrated score separates more precisely for risk of progression at the diagnostically challenging interface of WHO grade 1 and grade 2 tumors (hazard ratio 4.34 [2.48-7.57] and 3.34 [1.28-8.72] retrospective and prospective validation cohorts, respectively). CONCLUSION: Merging these layers of histologic and molecular data into an integrated, three-tiered score significantly improves the precision in meningioma stratification. Implementation into diagnostic routine informs clinical decision making for patients with meningioma on the basis of robust outcome prediction

    Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and Prospectively Validated.

    Get PDF
    PURPOSE: Meningiomas are the most frequent primary intracranial tumors. Patient outcome varies widely from benign to highly aggressive, ultimately fatal courses. Reliable identification of risk of progression for individual patients is of pivotal importance. However, only biomarkers for highly aggressive tumors are established (CDKN2A/B and TERT), whereas no molecularly based stratification exists for the broad spectrum of patients with low- and intermediate-risk meningioma. METHODS: DNA methylation data and copy-number information were generated for 3,031 meningiomas (2,868 patients), and mutation data for 858 samples. DNA methylation subgroups, copy-number variations (CNVs), mutations, and WHO grading were analyzed. Prediction power for outcome was assessed in a retrospective cohort of 514 patients, validated on a retrospective cohort of 184, and on a prospective cohort of 287 multicenter cases. RESULTS: Both CNV- and methylation family-based subgrouping independently resulted in increased prediction accuracy of risk of recurrence compared with the WHO classification (c-indexes WHO 2016, CNV, and methylation family 0.699, 0.706, and 0.721, respectively). Merging all risk stratification approaches into an integrated molecular-morphologic score resulted in further substantial increase in accuracy (c-index 0.744). This integrated score consistently provided superior accuracy in all three cohorts, significantly outperforming WHO grading (c-index difference P = .005). Besides the overall stratification advantage, the integrated score separates more precisely for risk of progression at the diagnostically challenging interface of WHO grade 1 and grade 2 tumors (hazard ratio 4.34 [2.48-7.57] and 3.34 [1.28-8.72] retrospective and prospective validation cohorts, respectively). CONCLUSION: Merging these layers of histologic and molecular data into an integrated, three-tiered score significantly improves the precision in meningioma stratification. Implementation into diagnostic routine informs clinical decision making for patients with meningioma on the basis of robust outcome prediction

    Targeting brain tumor stem cells by interfering with choline metabolism: Evidence for an EMT-choline oncometabolic network

    No full text
    Glioblastoma (GBM) is the most lethal primary malignant brain tumor with a median survival of less than two years. High levels of therapy resistance, strong cellular invasiveness and rapid cell growth demand aggressive multimodal therapies involving resection as well as radio-chemotherapy. Recent evidence has pointed to the existence of brain tumor stem cells (BTSCs), a subpopulation of human brain tumors which is thought to be responsible for tumor dissemination, relapse and chemo resistance. BTSCs have been associated with the expression of mesenchymal features as a result of epithelial-mesenchymal transition (EMT). Using high resolution proton nuclear magnetic resonance spectroscopy (1H NMR) we compared the intracellular metabolic composition of GBM cells after induction vs. inhibition of EMT as well as under stem cell or differentiated conditions. We identified that both EMT and enrichment for stemness induces the cholinic phenotype which is characterized by high intracellular levels of phosphocholine and total choline derivatives. Furthermore, interference with choline metabolism by targeting choline kinase alpha (CHKα) reversed EMT in GBM cells as we observed reduced invasiveness, clonogenicity, and expression of EMT associated genes. Taken together, interfering with choline metabolism is a powerful strategy to suppress EMT and thus target BTSCs. Moreover, the newly identified BTSC-oncometabolic network could be used to non-invasively monitor the invasive properties of glioblastomas and the success of anti-BTSC therapy

    Sarcoma classification by DNA methylation profiling

    Get PDF
    Sarcomas are malignant soft tissue and bone tumours affecting adults, adolescents and children. They represent a morphologically heterogeneous class of tumours and some entities lack defining histopathological features. Therefore, the diagnosis of sarcomas is burdened with a high inter-observer variability and misclassification rate. Here, we demonstrate classification of soft tissue and bone tumours using a machine learning classifier algorithm based on array-generated DNA methylation data. This sarcoma classifier is trained using a dataset of 1077 methylation profiles from comprehensively pre-characterized cases comprising 62 tumour methylation classes constituting a broad range of soft tissue and bone sarcoma subtypes across the entire age spectrum. The performance is validated in a cohort of 428 sarcomatous tumours, of which 322 cases were classified by the sarcoma classifier. Our results demonstrate the potential of the DNA methylation-based sarcoma classification for research and future diagnostic applications

    Glioblastoma cells vampirize WNT from neurons and trigger a JNK/MMP signaling loop that enhances glioblastoma progression and neurodegeneration

    No full text
    corecore