32 research outputs found

    Physical inactivity causes endothelial dysfunction

    Get PDF
    ЭНДОТЕЛИЙ /ПОВРЕЖДЭПИТЕЛИЙ /ПОВРЕЖДДВИГАТЕЛЬНАЯ НАГРУЗКА, МЕТОДЫ ИССЛЕДОВАНИЯФИЗИЧЕСКОЕ НАПРЯЖЕНИ

    Radiation-induced changes of endothelium- and NO-dependent reactivity

    Get PDF
    ИЗЛУЧЕНИЯ ВОЗДЕЙСТВИЕЗДОРОВЬЯ ИЗМЕНЕНИЯ ПРИ ВОЗДЕЙСТВИИ ИЗЛУЧЕНИЙЭНДОТЕЛИЙ /ПОВРЕЖДАЗОТА ОКСИДЫАЗОТА СОЕДИНЕНИ

    Red Blood Cell and Endothelial eNOS Independently Regulate Circulating Nitric Oxide Metabolites and Blood Pressure

    Get PDF
    Background: Current paradigms suggest that nitric oxide (NO) produced by endothelial cells (ECs) through endothelial nitric oxide synthase (eNOS) in the vessel wall is the primary regulator of blood flow and blood pressure. However, red blood cells (RBCs) also carry a catalytically active eNOS, but its role is controversial and remains undefined. This study aimed to elucidate the functional significance of RBC eNOS compared with EC eNOS for vascular hemodynamics and nitric oxide metabolism. Methods: We generated tissue-specific loss- and gain-of-function models for eNOS by using cell-specific Cre-induced gene inactivation or reactivation. We created 2 founder lines carrying a floxed eNOS (eNOSflox/flox) for Cre-inducible knockout (KO), and gene construct with an inactivated floxed/inverted exon (eNOSinv/inv) for a Cre-inducible knock-in (KI), which respectively allow targeted deletion or reactivation of eNOS in erythroid cells (RBC eNOS KO or RBC eNOS KI mice) or in ECs (EC eNOS KO or EC eNOS KI mice). Vascular function, hemodynamics, and nitric oxide metabolism were compared ex vivo and in vivo. Results: The EC eNOS KOs exhibited significantly impaired aortic dilatory responses to acetylcholine, loss of flow-mediated dilation, and increased systolic and diastolic blood pressure. RBC eNOS KO mice showed no alterations in acetylcholine-mediated dilation or flow-mediated dilation but were hypertensive. Treatment with the nitric oxide synthase inhibitor Nγ-nitro-l-arginine methyl ester further increased blood pressure in RBC eNOS KOs, demonstrating that eNOS in both ECs and RBCs contributes to blood pressure regulation. Although both EC eNOS KOs and RBC eNOS KOs had lower plasma nitrite and nitrate concentrations, the levels of bound NO in RBCs were lower in RBC eNOS KOs than in EC eNOS KOs. Reactivation of eNOS in ECs or RBCs rescues the hypertensive phenotype of the eNOSinv/invmice, whereas the levels of bound NO were restored only in RBC eNOS KI mice. Conclusions: These data reveal that eNOS in ECs and RBCs contribute independently to blood pressure homeostasis

    Reactive oxygen species and small-conductance calcium-dependent potassium channels are key mediators of inflammation-induced hypotension and shock

    Get PDF
    Septic shock is associated with life-threatening vasodilation and hypotension. To cause vasodilation, vascular endothelium may release nitric oxide (NO), prostacyclin (PGI2), and the elusive endothelium-derived hyperpolarizing factor (EDHF). Although NO is critical in controlling vascular tone, inhibiting NO in septic shock does not improve outcome, on the contrary, precipitating the search for alternative therapeutic targets. Using a hyperacute tumor necrosis factor (TNF)-induced shock model in mice, we found that shock can develop independently of the known vasodilators NO, cGMP, PGI2, or epoxyeicosatrienoic acids. However, the antioxidant tempol efficiently prevented hypotension, bradycardia, hypothermia, and mortality, indicating the decisive involvement of reactive oxygen species (ROS) in these phenomena. Also, in classical TNF or lipopolysaccharide-induced shock models, tempol protected significantly. Experiments with (cell-permeable) superoxide dismutase or catalase, N-acetylcysteine and apocynin suggest that the ROS-dependent shock depends on intracellular \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}OH ^\bullet {\hbox{OH}} \end{document} radicals. Potassium channels activated by ATP (KATP) or calcium (KCa) are important mediators of vascular relaxation. While NO and PGI2-induced vasodilation involves KATP and large-conductance BKCa channels, small-conductance SKCa channels mediate vasodilation induced by EDHF. Interestingly, also SKCa inhibition completely prevented the ROS-dependent shock. Our data thus indicate that intracellular \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}OH ^\bullet {\hbox{OH}} \end{document} and SKCa channels represent interesting new therapeutic targets for inflammatory shock. Moreover, they may also explain why antioxidants other than tempol fail to provide survival benefit during shock

    Stability of murine bradykinin type 2 receptor despite treatment with NO, bradykinin, icatibant, or C1-INH

    No full text
    Little is known about factors which trigger and/or contribute to hereditary angioedema or ACE-inhibitor-mediated angioedema including variations in bradykinin type 2 receptor (B2R) expression and activity.Protein and mRNA expression of B2R and the increase of intracellular calcium (iCa) in response to bradykinin were monitored in porcine and murine endothelial cells in response to NO donors or bradykinin. B2R protein expression was evaluated in skin, heart, and lung of (i) mice with endothelial-specific overexpression of eNOS (eNOS(tg) ), (ii) in eNOS(-/-) mice and (iii) in C57BL/6 mice treated with the NO donor pentaerythritol tetranitrate (PETN), the NOS inhibitor l-nitroarginine (L-NA), plasma pool C1-INH, and the B2R antagonist icatibant. Aortic reactivity to bradykinin was investigated including eNOS(-/-) mice.B2R protein and mRNA expression remained unchanged in cells subjected to L-NA, NO donors, and bradykinin in a time- and concentration-dependent manner. Likewise, increases of iCa in murine brain endothelial cells remained unchanged. B2R protein levels were similar in eNOS(tg) and eNOS(-/-) as compared to transgene-negative littermates. Likewise, treatment of C57BL/6 mice with PETN, L-NA, C1-INH or icatibant did not change B2R protein expression. In aortic rings of C57BL/6 mice, bradykinin induced B2R-dependent constrictions which were attenuated by endothelial NO and abolished by diclofenac indicating the functional importance of B2R-induced activation of endothelial NO synthase and cyclooxygenase.These data suggest that alterations of B2R protein expression induced by NO, bradykinin, C1-INH, or icatibant unlikely contribute to bradykinin-induced angioedema. This finding does not rule out a role for NO in bradykinin-induced extravasation and/or angioedema.? 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

    On the Effects of Reactive Oxygen Species and Nitric Oxide on Red Blood Cell Deformability

    No full text
    The main function of red blood cells (RBCs) is the transport of respiratory gases along the vascular tree. To fulfill their task, RBCs are able to elastically deform in response to mechanical forces and, pass through the narrow vessels of the microcirculation. Decreased RBC deformability was observed in pathological conditions linked to increased oxidative stress or decreased nitric oxide (NO) bioavailability, like hypertension. Treatments with oxidants and with NO were shown to affect RBC deformability ex vivo, but the mechanisms underpinning these effects are unknown. In this study we investigate whether changes in intracellular redox status/oxidative stress or nitrosation reactions induced by reactive oxygen species (ROS) or NO may affect RBC deformability. In a case-control study comparing RBCs from healthy and hypertensive participants, we found that RBC deformability was decreased, and levels of ROS were increased in RBCs from hypertensive patients as compared to RBCs from aged-matched healthy controls, while NO levels in RBCs were not significantly different. To study the effects of oxidants on RBC redox state and deformability, RBCs from healthy volunteers were treated with increasing concentrations of tert-butylhydroperoxide (t-BuOOH). We found that high concentrations of t-BuOOH (≥ 1 mM) significantly decreased the GSH/GSSG ratio in RBCs, decreased RBC deformability and increased blood bulk viscosity. Moreover, RBCs from Nrf2 knockout (KO) mice, a strain genetically deficient in a number of antioxidant/reducing enzymes, were more susceptible to t-BuOOH-induced impairment in RBC deformability as compared to wild type (WT) mice. To study the role of NO in RBC deformability we treated RBC suspensions from human volunteers with NO donors and nitrosothiols and analyzed deformability of RBCs from mice lacking the endothelial NO synthase (eNOS). We found that NO donors induced S-nitrosation of the cytoskeletal protein spectrin, but did not affect human RBC deformability or blood bulk viscosity; moreover, under unstressed conditions RBCs from eNOS KO mice showed fully preserved RBC deformability as compared to WT mice. Pre-treatment of human RBCs with nitrosothiols rescued t-BuOOH-mediated loss of RBC deformability. Taken together, these findings suggest that NO does not affect RBC deformability per se, but preserves RBC deformability in conditions of oxidative stress
    corecore