3 research outputs found

    PF4/heparin complexes are T cell–dependent antigens

    No full text
    Heparin-induced thrombocytopenia (HIT) is a life-threatening, thrombotic disorder associated with development of anti–platelet factor 4 (anti-PF4)/heparin autoantibodies. Little is known about the antigenic and cellular requirements that initiate the immune response to these complexes. To begin to delineate mechanisms of autoantibody formation in HIT, we studied the immunizing effects of murine PF4 (mPF4)/heparin in mice with and without thymic function. Euthymic mice were injected with mPF4/heparin complexes, mPF4, heparin, or buffer. Mice injected with mPF4/heparin, but not mPF4 or heparin alone, developed heparin-dependent autoantibodies that shared serologic and functional characteristics of human HIT antibodies, including preferential binding to mPF4/heparin complexes and causing heparin- and FcRγIIA-dependent platelet activation. In contrast, athymic mice did not develop HIT-like antibodies. Taken together, these studies establish that PF4/heparin complexes are highly immunogenic and elicit self-reacting anti-PF4/heparin antibodies in a T cell–dependent manner

    Determinants of PF4/heparin immunogenicity

    No full text
    Heparin-induced thrombocytopenia (HIT) is an antibody-mediated disorder that occurs with variable frequency in patients exposed to heparin. HIT antibodies preferentially recognize large macromolecular complexes formed between PF4 and heparin over a narrow range of molar ratios, but the biophysical properties of complexes that initiate antibody production are unknown. To identify structural determinants underlying PF4/heparin immunogenicity, we characterized the in vitro interactions of murine PF4 (mPF4) and heparin with respect to light absorption, size, and surface charge (zeta potential). We show that PF4/heparin macromolecular assembly occurs through colloidal interactions, wherein heparin facilitates the growth of complexes through charge neutralization. The size of PF4/heparin macromolecules is governed by the molar ratios of the reactants. Maximal complex size occurs at molar ratios of PF4/heparin at which surface charge is neutral. When mice are immunized with complexes that differ in size and/or zeta potential, antibody formation varies inversely with heparin concentration and is most robust in animals immunized with complexes displaying a net positive zeta-potential. These studies suggest that the clinical heterogeneity in the HIT immune response may be due in part to requirements for specific biophysical parameters of the PF4/heparin complexes that occur in settings of intense platelet activation and PF4 release
    corecore