19 research outputs found

    Evaluation of the anti-inflammatory effects of β-adrenoceptor agonists on human lung macrophages

    Get PDF
    The principal mechanism by which bronchodilator β-adrenoceptor agonists act is to relax airways smooth muscle although they may also be anti-inflammatory. However, the extent of anti-inflammatory activity and the cell types affected by these agonists are uncertain. The purpose of this study was to evaluate whether β-adrenoceptor agonists prevent pro-inflammatory cytokine generation from activated human lung macrophages. Macrophages were isolated and purified from human lung. The cells were pre-treated with both short-acting (isoprenaline, salbutamol, terbutaline) and long-acting (formoterol, salmeterol, indacaterol) β-agonists before activation with lipopolysaccharide (LPS) to induce cytokine (TNFα, IL-6, IL-8 and IL-10) generation. The experiments showed that short-acting β-agonists were poor inhibitors of cytokine generation. Of the long-acting β-agonists studied, formoterol was also a weak inhibitor of cytokine generation whereas only indacaterol and salmeterol showed moderate inhibitory activity. Further experiments using the β2-adrenoceptor antagonist ICI-118,551 suggested that the effects of indacaterol were likely to be mediated by β2-adrenoceptors whereas those of salmeterol were not. These findings were corroborated by functional desensitization studies in which the inhibitory effects of indacaterol appeared to be receptor-mediated whereas those of salmeterol were not. Taken together, the data indicate that the anti-inflammatory effects of β-adrenoceptor agonists on human lung macrophages are modest

    Prostaglandin D2 generation from human lung mast cells is catalysed exclusively by cyclooxygenase-1

    Get PDF
    Mast cells are an exceptionally rich source of prostaglandin D2 (PGD2). PGD2 is pro-inflammatory and can cause bronchoconstriction. The enzyme cyclooxygenase (COX) is central to the generation of prostanoids such as PGD2. Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit COX. COX exists as two isoforms, COX-1 and COX-2. The principal aim of this study was to establish whether COX-1 and/or COX-2 mediates PGD2 generation from human lung mast cells. Mast cells were isolated from human lung tissue and purified by flotation over Percoll and immunomagnetic bead separations. The cells were activated with anti-IgE or Stem Cell Factor (SCF). The generation of PGD2 was determined by ELISA. The effects of NSAIDs (aspirin, ibuprofen, diclofenac, naproxen, indomethacin), COX-1 selective (FR122047), and COX-2 selective (celecoxib) inhibitors on PGD2 generation were determined. The expression of COX-1 and COX-2 in mast cells was determined by Western blotting. All the NSAIDs tested abrogated stimulated PGD2 generation from mast cells except aspirin which was only weakly effective. FR122047 was an effective inhibitor of PGD2 generation (EC50 ~25 nM) from mast cells whereas celecoxib was ineffective. Immunoblotting indicated that COX-1 was strongly expressed in all mast cell preparations while COX-2 expression was weak. No induction of COX-2 was observed following activation of mast cells. These findings indicate that COX-1 is the principal isoform involved in generating PGD2 from human lung mast cells. These studies provide insight into the potential behaviour of NSAIDs in the context of respiratory diseases

    Application of postmortem imaging modalities in cases of sudden death due to cardiovascular diseases-current achievements and limitations from a pathology perspective : Endorsed by the Association for European Cardiovascular Pathology and by the International Society of Forensic Radiology and Imaging.

    Get PDF
    Postmortem imaging (PMI) is increasingly used in postmortem practice and is considered a potential alternative to a conventional autopsy, particularly in case of sudden cardiac deaths (SCD). In 2017, the Association for European Cardiovascular Pathology (AECVP) published guidelines on how to perform an autopsy in such cases, which is still considered the gold standard, but the diagnostic value of PMI herein was not analyzed in detail. At present, significant progress has been made in the PMI diagnosis of acute ischemic heart disease, the most important cause of SCD, while the introduction of postmortem CT angiography (PMCTA) has improved the visualization of several parameters of coronary artery pathology that can support a diagnosis of SCD. Postmortem magnetic resonance (PMMR) allows the detection of acute myocardial injury-related edema. However, PMI has limitations when compared to clinical imaging, which severely impacts the postmortem diagnosis of myocardial injuries (ischemic versus non-ischemic), the age-dating of coronary occlusion (acute versus old), other potentially SCD-related cardiac lesions (e.g., the distinctive morphologies of cardiomyopathies), aortic diseases underlying dissection or rupture, or pulmonary embolism. In these instances, PMI cannot replace a histopathological examination for a final diagnosis. Emerging minimally invasive techniques at PMI such as image-guided biopsies of the myocardium or the aorta, provide promising results that warrant further investigations. The rapid developments in the field of postmortem imaging imply that the diagnosis of sudden death due to cardiovascular diseases will soon require detailed knowledge of both postmortem radiology and of pathology

    Application of postmortem imaging modalities in cases of sudden death due to cardiovascular diseases–current achievements and limitations from a pathology perspective

    Get PDF
    Postmortem imaging (PMI) is increasingly used in postmortem practice and is considered a potential alternative to a conventional autopsy, particularly in case of sudden cardiac deaths (SCD). In 2017, the Association for European Cardiovascular Pathology (AECVP) published guidelines on how to perform an autopsy in such cases, which is still considered the gold standard, but the diagnostic value of PMI herein was not analyzed in detail. At present, significant progress has been made in the PMI diagnosis of acute ischemic heart disease, the most important cause of SCD, while the introduction of postmortem CT angiography (PMCTA) has improved the visualization of several parameters of coronary artery pathology that can support a diagnosis of SCD. Postmortem magnetic resonance (PMMR) allows the detection of acute myocardial injury-related edema. However, PMI has limitations when compared to clinical imaging, which severely impacts the postmortem diagnosis of myocardial injuries (ischemic versus non-ischemic), the age-dating of coronary occlusion (acute versus old), other potentially SCD-related cardiac lesions (e.g., the distinctive morphologies of cardiomyopathies), aortic diseases underlying dissection or rupture, or pulmonary embolism. In these instances, PMI cannot replace a histopathological examination for a final diagnosis. Emerging minimally invasive techniques at PMI such as image-guided biopsies of the myocardium or the aorta, provide promising results that warrant further investigations. The rapid developments in the field of postmortem imaging imply that the diagnosis of sudden death due to cardiovascular diseases will soon require detailed knowledge of both postmortem radiology and of pathology

    A local human Vδ1 T cell population is associated with survival in nonsmall-cell lung cancer

    Get PDF
    Murine tissues harbor signature γδ T cell compartments with profound yet differential impacts on carcinogenesis. Conversely, human tissue-resident γδ cells are less well defined. In the present study, we show that human lung tissues harbor a resident Vδ1 γδ T cell population. Moreover, we demonstrate that Vδ1 T cells with resident memory and effector memory phenotypes were enriched in lung tumors compared with nontumor lung tissues. Intratumoral Vδ1 T cells possessed stem-like features and were skewed toward cytolysis and helper T cell type 1 function, akin to intratumoral natural killer and CD8+ T cells considered beneficial to the patient. Indeed, ongoing remission post-surgery was significantly associated with the numbers of CD45RA−CD27− effector memory Vδ1 T cells in tumors and, most strikingly, with the numbers of CD103+ tissue-resident Vδ1 T cells in nonmalignant lung tissues. Our findings offer basic insights into human body surface immunology that collectively support integrating Vδ1 T cell biology into immunotherapeutic strategies for nonsmall cell lung cancer

    Measurement and Significance of Pacemaker Pulse Parameters

    No full text
    corecore