13,908 research outputs found
Trajectory computational techniques emphasizing existence, uniqueness, and construction of solutions to boundary problems for ordinary differential equations Final report
Trajectory computational techniques emphasizing existence, uniqueness, and construction of solutions to boundary problems for ordinary differential equation
Josephson Coupling through a Quantum Dot
We derive, via fourth order perturbation theory, an expression for the
Josephson current through a gated interacting quantum dot. We analyze our
expression for two different models of the superconductor-dot-superconductor
(SDS) system. When the matrix elements connecting dot and leads are featureless
constants, we compute the Josephson coupling J_c as a function of the gate
voltage and Coulomb interaction. In the diffusive dot limit, we compute the
probability distribution P(J_c) of Josephson couplings. In both cases, pi
junction behavior (J_c < 0) is possible, and is not simply dependent on the
parity of the dot occupancy.Comment: 9 pages; 3 encapsulated PostScript figure
Preliminary catalog of pictures taken on the lunar surface during the Apollo 15 mission
Catalog of all pictures taken from lunar module or lunar surface during Apollo 15 missio
Modelling the hepatitis B vaccination programme in prisons
A vaccination programme offering hepatitis B (HBV) vaccine at reception into prison has been introduced into selected prisons in England and Wales. Over the coming years it is anticipated this vaccination programme will be extended. A model has been developed to assess the potential impact of the programme on the vaccination coverage of prisoners, ex-prisoners, and injecting drug users (IDUs). Under a range of coverage scenarios, the model predicts the change over time in the vaccination status of new entrants to prison, current prisoners and IDUs in the community. The model predicts that at baseline in 2012 57% of the IDU population will be vaccinated with up to 72% being vaccinated depending on the vaccination scenario implemented. These results are sensitive to the size of the IDU population in England and Wales and the average time served by an IDU during each prison visit. IDUs that do not receive HBV vaccine in the community are at increased risk from HBV infection. The HBV vaccination programme in prisons is an effective way of vaccinating this hard-to-reach population although vaccination coverage on prison reception must be increased to achieve this
Temperature dependence of surface reconstructions of Au on Pd(110)
Surface reconstructions of Au film on Pd(110) substrate are studied using a
local Einstein approximation to quasiharmonic theory with the Sutton-Chen
interatomic potential. Temperature dependent surface free energies for
different coverages and surface structures are calculated. Experimentally
observed transformations from to and
structures can be explained in the framework of this model. Also conditions for
Stranski-Krastanov growth mode are found to comply with experiments. The domain
of validity of the model neglecting mixing entropy is analyzed.Comment: 7 pages, REVTeX two-column format, 3 postscript figures available on
request from [email protected] To appear in Phys. Rev. Letter
Transverse Double-Spin Asymmetries for Muon Pair Production in pp-Collisions
We calculate the rapidity dependence of the transverse double-spin asymmetry
for the Drell-Yan process to next-to-leading order in the strong coupling.
Input transversity distributions are obtained by saturating the Soffer
inequality at a low hadronic mass scale. Results for the polarized BNL-RHIC
proton-proton collider and the proposed HERA-N fixed-target experiment are
presented, and the influence of the limited muon acceptance of the detectors on
measurements of the asymmetry is studied in detail.Comment: 7 pages including 5 figures; significantly shortened, to be published
in Phys. Rev.
Coherence and Intermittency of Electron Density in Small-Scale Interstellar Turbulence
Spatial intermittency in decaying kinetic Alfven wave turbulence is
investigated to determine if it produces non Gaussian density fluctuations in
the interstellar medium. Non Gaussian density fluctuations have been inferred
from pulsar scintillation scaling. Kinetic Alfven wave turbulence characterizes
density evolution in magnetic turbulence at scales near the ion gyroradius. It
is shown that intense localized current filaments in the tail of an initial
Gaussian probability distribution function possess a sheared magnetic field
that strongly refracts the random kinetic Alfven waves responsible for
turbulent decorrelation. The refraction localizes turbulence to the filament
periphery, hence it avoids mixing by the turbulence. As the turbulence decays
these long-lived filaments create a non Gaussian tail. A condition related to
the shear of the filament field determines which fluctuations become coherent
and which decay as random fluctuations. The refraction also creates coherent
structures in electron density. These structures are not localized. Their
spatial envelope maps into a probability distribution that decays as density to
the power -3. The spatial envelope of density yields a Levy distribution in the
density gradient.Comment: 31 pages, 3 figures. Replacement contains short additions to Secs. 6
and
The Impact of Atmospheric Fluctuations on Degree-scale Imaging of the Cosmic Microwave Background
Fluctuations in the brightness of the Earth's atmosphere originating from
water vapor are an important source of noise for ground-based instruments
attempting to measure anisotropy in the Cosmic Microwave Background. This paper
presents a model for the atmospheric fluctuations and derives simple
expressions to predict the contribution of the atmosphere to experimental
measurements. Data from the South Pole and from the Atacama Desert in Chile,
two of the driest places on Earth, are used to assess the level of fluctuations
at each site.Comment: 29 pages, 7 figures, 1 table, appears in The Astrophysical Journa
Risk-Seeking versus Risk-Avoiding Investments in Noisy Periodic Environments
We study the performance of various agent strategies in an artificial
investment scenario. Agents are equipped with a budget, , and at each
time step invest a particular fraction, , of their budget. The return on
investment (RoI), , is characterized by a periodic function with
different types and levels of noise. Risk-avoiding agents choose their fraction
proportional to the expected positive RoI, while risk-seeking agents
always choose a maximum value if they predict the RoI to be positive
("everything on red"). In addition to these different strategies, agents have
different capabilities to predict the future , dependent on their
internal complexity. Here, we compare 'zero-intelligent' agents using technical
analysis (such as moving least squares) with agents using reinforcement
learning or genetic algorithms to predict . The performance of agents is
measured by their average budget growth after a certain number of time steps.
We present results of extensive computer simulations, which show that, for our
given artificial environment, (i) the risk-seeking strategy outperforms the
risk-avoiding one, and (ii) the genetic algorithm was able to find this optimal
strategy itself, and thus outperforms other prediction approaches considered.Comment: 27 pp. v2 with minor corrections. See http://www.sg.ethz.ch for more
inf
- ā¦